Will Murray's Probability, VIII. Expected Value (Mean) 1

VIII. Expected Value (Mean)

Definition of Expected Value

- The expected value of a (discrete) random variable Y, also known as the mean, is

$$
\underline{\mu=E(Y)}:=\sum_{y \in \mathbb{R}} p(y) y .
$$

- Think of it as the average value of Y over the long run if an experiment is repeated many times.
- If Y is a payoff for a fair game, then $E(Y)$ is the amount you should pay to play the game once.

Remember that expected value and mean are exactly the same.

Indicator Variables

- If A is an event, then we sometimes define the indicator variable

$$
Y_{A}:= \begin{cases}1 & \text { if } A \text { is true } \\ 0 & \text { if } A \text { is false }\end{cases}
$$

- Then $E\left(Y_{A}\right)=P(A)$.

Will Murray's Probability, VIII. Expected Value (Mean) 2

- For random variables Y_{1} and Y_{2} and constants a and b, we have

$$
E\left(a Y_{1}+b Y_{2}\right)=a E\left(Y_{1}\right)+b E\left(Y_{2}\right) .
$$

- This is often useful for breaking a complicated variable down into simpler variables, like indicator variables.

Expected Value of a Function

- If $g(Y)$ is a function of a random variable Y, then

$$
\underline{E[g(Y)]}:=\sum_{y \in \mathbb{R}} p(y) g(y) .
$$

Highlight the change from y to $g(y)$.

Example I

You draw a card from a standard 52-card deck. If it's ace through nine, I pay you that amount. If it's a ten or a face card, you pay me $\$ 10$. What is the expected value for this random variable?

$$
\sum_{y} p(y) y=\frac{1}{13}[1+2+\cdots+9-4 \cdot 10]=\frac{1}{13}[45-40]=\frac{5}{13}>0 .
$$

So you should pay $\$ \frac{5}{13}$ to make it a fair game.

Example II

As above, you draw a card from a standard 52 -card deck. If it's ace through nine, I pay you that amount. If it's a ten or a face card, you pay me $\$ 10$. Let Y be the amount I pay you. What is the expected value for Y^{2} ? If this were a casino game and the casino promised to pay you Y^{2}, how much might the casino charge you to play?

$$
\begin{aligned}
E\left[Y^{2}\right] & =\sum_{y} p(y) y^{2} \\
& =\frac{1}{13}[1+4+\cdots+81+4 \cdot 100] \\
& =\frac{1}{13}\left[\frac{n(n+1)(2 n+1)}{6}(\text { with } n=9)+400\right] \\
& =\frac{1}{13}[685] \\
& \approx \$ 53
\end{aligned}
$$

In Vegas, you might pay $\$ 60$ to play.

Example III

(a) Flip a coin 3 times. What is the expected number of heads?
(b) Flip a coin 100 times. What is the expected number of heads?

Will Murray's Probability, VIII. Expected Value (Mean) 4

Let $Y:=$ total number of heads.

outcome	Y
$H H H$	3
$H H T$	2
$H T H$	2
$H T T$	1
$T H H$	2
$T H T$	1
$T T H$	1
$T T T$	0

$E(Y)=\frac{1}{8}(3+2+2+1+2+1+1+0)=\frac{12}{8}=\frac{3}{2}$
Better way: Define the indicator variables $Y_{1}:=$ 1 if the first flip is a head, 0 if it's a tail. $Y_{2}, Y_{3}:=$ etc.

$$
\begin{aligned}
Y & =Y_{1}+Y_{2}+Y_{3} \\
E(Y) & =E\left(Y_{1}+Y_{2}+Y_{3}\right) \\
& =E\left(Y_{1}\right)+E\left(Y_{2}\right)+E\left(Y_{3}\right) \\
& =\frac{1}{2}+\frac{1}{2}+\frac{1}{2} \\
& =\frac{3}{2}
\end{aligned}
$$

With 100 flips, $\mu=50$.

Example IV

In your probability class, the two midterm exams count for 25% each of the semester grade, the final exam counts for 30%, and the homework counts for 20%. You score 60 and 80 on the midterms,

Will Murray's Probability, VIII. Expected Value (Mean) 5

80 on the final, and 100 on the homework. What is your semester average?
$\mu:=\sum_{y \in \mathbb{R}} p(y) y=\underbrace{60}_{y} \cdot \underbrace{\frac{25}{100}}_{p(y)}+\underbrace{80}_{y} \cdot \underbrace{\frac{55}{100}}_{p(y)}+\underbrace{100}_{y} \cdot \underbrace{\frac{20}{100}}_{p(y)}=\operatorname{exactly} 79$

Example V

Roll one die and let Y be the number showing. What is $E\left(Y^{2}\right)$?

$$
\frac{1}{6}(1+4+9+16+25+36)=\frac{91}{6}
$$

