VII. Random Variables

Intuition

- A random variable Y is a quantity you keep track of during an experiment.
- Example: In the World Series, the Yankees play the Giants for 7 games. There are 2^{7} possible outcomes, but we're only really interested in
$Y:=$ number of games the Yankees win.

This is different from the rules for the real World Series, in which one might play less than 7 games.

Intuition

- Sometimes it's useful to think of a payoff on an experiment.
- Example: You draw a card, and if it's ace through nine, I pay you that amount. If it's a ten or a face card, you pay me $\$ 10$.
$Y:=$ amount of money you make
Note that this Y could be positive or negative.

$$
\begin{aligned}
Y(\text { ace }) & :=1 \\
Y(2) & :=2 \\
& \vdots \\
Y(\text { jack }) & :=-10
\end{aligned}
$$

Definition

- A random variable is a function from a sample space to \mathbb{R}, the set of real numbers.

$$
Y: S \rightarrow \mathbb{R}
$$

Example: In the World Series, how many games do the Yankees win?

$$
\begin{aligned}
Y(W W W L L W L) & =4 \\
Y(L L L L L L W) & =1 \\
Y(W L W L W L W) & =4 \\
& \vdots
\end{aligned}
$$

Probability distributions

- $p(y)=P(Y=y)$ is the sum of all the probabilities of the outcomes for which $Y=y$:

$$
\underline{p(y)=P(Y=y)}:=\sum_{E \in S, Y(E)=y} P(E)
$$

- The function $p(y)$ is the probability distribution of the random variable Y.

Example I

You draw a card from a standard 52 -card deck. If it's ace through nine, I pay you that amount. If it's a ten or a face card, you pay me $\$ 10$. What is the probability distribution for this random variable?

$$
\begin{aligned}
p(0) & =0 \\
p(1)=P(Y=1) & =\frac{4}{52}=\frac{1}{13} \\
p(2)=P(Y=1) & =\frac{4}{52}=\frac{1}{13} \\
& \vdots \\
p(9)=P(Y=1) & =\frac{4}{52}=\frac{1}{13} \\
p(-10)=P(Y=-10) & =p(-10)=\frac{16}{52}=\frac{4}{13}
\end{aligned}
$$

Example II

Flip a fair coin 10 times. Let Y be the number of heads. What is the probability distribution for this random variable?

$$
p(y)=P(Y=y)=\frac{\binom{10}{y}}{2^{10}}, 0 \leq y \leq 10
$$

Example III

Roll a die repeatedly until you get a 6 . Let Y be the number of rolls. What is the probability distribution for this random variable?

$$
\begin{aligned}
p(1)=P(Y=1) & =\frac{1}{6} \\
p(2) & =\frac{5}{6} \cdot \frac{1}{6} \\
p(3) & =\frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} \\
& \vdots \\
p(y) & =\left(\frac{5}{6}\right)^{y-1} \cdot \frac{1}{6}, 1 \leq y<\infty
\end{aligned}
$$

Example IV

Manchester United plays Liverpool FC for three matches. In any given match, Liverpool is twice as likely to win as Manchester. There are no ties. Let Y be the number of matches Liverpool wins. What is the probability distribution for this random variable?

In each match, Liverpool wins with probability $\frac{1}{3}$,
Manchester with probability $\frac{2}{3}$.

$$
\begin{aligned}
p(0)=P(Y=0) & =P(L L L)=\left(\frac{1}{3}\right)^{3}=\frac{1}{27} \\
p(1) & =P(W L L, L W L, L L W)=3\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{2}=\frac{2}{9} \\
p(2) & =P(W W L, W L W, L L W)=3\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)=\frac{4}{9} \\
p(3) & =P(W W W)=\left(\frac{2}{3}\right)^{3}=\frac{8}{27}
\end{aligned}
$$

Example V

You and a friend each flip a coin. If both flips are heads, your friend pays you $\$ 10$; if both are tails, he pays you $\$ 5$. If the coins do not match, you pay him $\$ 5$. Let Y be the amount you win. What is the probability distribution for this random variable?

$$
\begin{aligned}
p(0)=P(Y=0) & =0 \\
p(5) & =P(T T)=\frac{1}{4} \\
p(10) & =P(H H)=\frac{1}{4} \\
p(-5) & =P(H T, T H)=\frac{1}{2}
\end{aligned}
$$

