XXXIII. Order Statistics

Premise

- Example question: How tall will the tallest student in my next semester's probability class be?
- Setting: We have independent random variables Y_{1}, \ldots, Y_{n}, with identical distributions $\quad F(y)$ and densities $f(y)=F^{\prime}(y)$.
- Definition: $Y_{(1)}:=\min \left\{Y_{1}, \ldots, Y_{n}\right\}$
- Definition: $Y_{(n)}:=\max \left\{Y_{1}, \ldots, Y_{n}\right\}$
- Question: What are the distributions and densities of $Y_{(1)}$ and $Y_{(n)}$?

I saw that I have 24 names registered, but I didn't see who they are. (The bigger the class, the more chance you have to have a tall student.)
Why it's unpleasant: $Y_{(1)}$ and Y_{1} are different!

$$
\begin{aligned}
Y_{1} & =\text { first } \\
Y_{(1)} & =\text { smallest } \\
Y_{n} & =\text { last } \\
Y_{(n)} & =\text { largest }
\end{aligned}
$$

Formulas

$$
\begin{aligned}
F_{Y_{(n)}}(y) & :=P\left(Y_{(n)}<y\right) \\
& =F(y)^{n} \\
f_{Y_{(n)}}(y) & =F_{Y_{(n)}}^{\prime}(y) \\
& =n F(y)^{n-1} f(y) \\
F_{Y_{(1)}}(y) & :=P\left(Y_{(1)}<y\right) \\
& =1-[1-F(y)]^{n} \\
f_{Y_{(1)}}(y) & =F_{Y_{(1)}}^{\prime}(y) \\
& =n[1-F(y)]^{n-1} f(y)
\end{aligned}
$$

$$
\begin{aligned}
Y_{(1)} & =\text { smallest } \\
Y_{(n)} & =\text { largest } \\
F & =\text { distribution } \\
f & =\text { density }
\end{aligned}
$$

Example I

24 students in a class each write a term paper. The papers' lengths are uniformly distributed from 0 to 7 pages. Find the distribution and density functions for the length of the longest paper.

Uniform distribution: $f(y)=\frac{1}{7}, 0 \leq y \leq 7$.
$F(y)=\frac{y}{7}$.

$$
\begin{aligned}
F_{Y_{(n)}}(y) & =F(y)^{n} \\
f_{Y_{(n)}}(y) & =n F(y)^{n-1} f(y) \\
F_{Y_{(n)}}(y) & =\left(\frac{y}{7}\right)^{24} \\
f_{Y_{(n)}}(y) & =24\left(\frac{y}{7}\right)^{23} \frac{1}{7}=\frac{24 y^{23}}{7^{24}}, 0 \leq y \leq 7
\end{aligned}
$$

Example II

As in Example I, 24 students in a class each write a term paper. The papers' lengths are uniformly distributed from 0 to 7 pages. Find the distribution and density functions for the length of the shortest paper.

Uniform distribution: $f(y)=\frac{1}{7}, 0 \leq y \leq 7$. $F(y)=\frac{y}{7}$.

$$
\begin{aligned}
F_{Y_{(n)}}(y) & =F(y)^{n} \\
f_{Y_{(n)}}(y) & =n F(y)^{n-1} f(y) \\
F_{Y_{(1)}}(y) & =1-\left(\frac{7-y}{7}\right)^{24} \\
f_{Y_{(1)}}(y) & =24\left(\frac{7-y}{7}\right)^{23} \frac{1}{7}=\frac{24}{7^{24}}(7-y)^{23}, 0 \leq y \leq 7
\end{aligned}
$$

Example III

As in Example I, 24 students in a class each write a term paper. The papers' lengths are uniformly distributed from 0 to 7 pages. Find the mean and variance for the length of the longest paper.

$$
\begin{aligned}
\text { Mean }: E\left[Y_{(n)}\right] & :=\int_{0}^{7} y f_{Y_{(n)}}(y) d y \\
& =\frac{24}{7^{24}} \int_{0}^{7} y^{24} d y \\
& =\left.\frac{24}{25 \cdot 7^{24}} y^{25}\right|_{y=0} ^{y=7} \\
& =\frac{24 \cdot 7}{25}=\frac{7 n}{n+1}
\end{aligned}
$$

Variance:

$$
\begin{aligned}
\sigma^{2} & =\left(\int_{0}^{7} y^{2} f_{Y_{(n)}}(y) d y\right)-\mu^{2} \\
& =\left(\frac{24}{7^{24}} \int_{0}^{7} y^{25} d y\right)-\left(\frac{24 \cdot 7}{25}\right)^{2} \\
& =\text { Maybe skip these steps. } \\
& =\left(\left.\frac{24}{7^{24} \cdot 26} y^{26}\right|_{y=0} ^{y=7}\right)-\left(\frac{24 \cdot 7}{25}\right)^{2} \\
& =\frac{24 \cdot 7^{26}}{7^{24} \cdot 26}-\frac{24^{2} \cdot 7^{2}}{25^{2}} \\
& =\frac{24 \cdot 7^{2}}{26}-\frac{24^{2} \cdot 7^{2}}{25^{2}} \\
& =\frac{24 \cdot 7^{2}\left(25^{2}-24 \cdot 26\right)}{26 \cdot 25^{2}} \\
& =\frac{24 \cdot 7^{2}(625-624)}{26 \cdot 25^{2}} \\
& =\frac{24 \cdot 7^{2}}{26 \cdot 25^{2}} \\
& =\frac{49 n}{(n+1)^{2}(n+2)}
\end{aligned}
$$

Example IV

A basketball team has 10 players (including reserves). For each player, the time until her next injury follows an exponential distribution with a mean of 5 years. Find the distribution and density and distribution functions for the time until the team's first injury.
$Y_{i} \sim$ Exponential(5):

$$
\begin{aligned}
f(y) & =\frac{1}{5} e^{-\frac{y}{5}} \\
F(y) & =\int_{0}^{y} \frac{1}{5} e^{-\frac{t}{5}} d t=-\left.e^{-\frac{t}{5}}\right|_{t=0} ^{t=y}=1-e^{-\frac{y}{5}} \\
F_{Y_{(1)}}(y) & =1-[1-F(y)]^{n}=1-\left(e^{-\frac{y}{5}}\right)^{10}=1-e^{-2 y}
\end{aligned}
$$

We could take a derivative here, but let's practice our formula:
$f_{Y_{(1)}}(y)=n[1-F(y)]^{n-1} f(y)=10\left(e^{-\frac{y}{5}}\right)^{9} \frac{1}{5} e^{-\frac{y}{5}}=2 e^{-2 y}$

Example V

As in Example IV, a basketball team has 10 players. For each player, the time until her next injury follows an exponential distribution with a mean of 5 years. Find the expected time until the team's first injury.

Will Murray's Probability, XXXIII. Order Statistics 7
$Y_{i} \sim$ Exponential(5):
$f(y)=\frac{1}{5} e^{-\frac{y}{5}}$
$f_{Y_{(1)}}(y)=n[1-F(y)]^{n-1} f(y)=10\left(e^{-\frac{y}{5}}\right)^{9} \frac{1}{5} e^{-\frac{y}{5}}=2 e^{-2 y}$
This is Exponential $\left(\frac{1}{2}\right)$, so the expected time is six months. In general, if $Y_{1}, \ldots, Y_{n} \sim$ $\operatorname{Exponential}(\beta)$, then $Y_{(1)} \sim \operatorname{Exponential}\left(\frac{\beta}{n}\right)$.

