XXXII. Moment-Generating Functions

Premise

- We have several random variables, Y_1, Y_2 , etc.
- We want to study functions of them: $U(Y_1, \ldots, Y_n)$.
- Before, we calculated the <u>mean</u> of U and the <u>variance</u>, but that's not enough to determine the whole distribution of U.

Goal

- We want to find the full distribution function $F_U(u) := P(U \le u)$.
- Then we can find the density function $f_U(u) = F'_U(u).$
- We can calculate probabilities:

$$P(a \le U \le b) = \int_a^b f_U(u) \, du = F_U(b) - F_U(a)$$

Three methods

- 1. Distribution functions. (Two lectures ago, using geometric methods from Calculus III.)
- 2. Transformations. (Previous lecture, using methods from Calculus I.)

3. Moment-generating functions. (This lecture.)

Review of Moment-Generating Functions

• **Recall**: The moment-generating function for a random variable Y is

$$m_Y(t) := E\left(e^{tY}\right).$$

• The MGF is a function of t (not y).

See previous lecture on MGFs.

MGFs for the Discrete Distributions

Distribution	MGF
Binomial	$\left[pe^t + (1-p)\right]^n$
Geometric	$\frac{pe^t}{1-(1-p)e^t}$
Negative binomial	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$
Hypergeometric	No closed-form MGF.
Poisson	$e^{\lambda\left(e^t-1 ight)}$

All are functions of t. In the first three, we could substitute q := 1 - p.

MGFs for the Continuous Distributions

Distribution	MGF
Uniform	$\frac{e^{t\theta_2} - e^{t\theta_1}}{t\left(\theta_2 - \theta_1\right)}$
Normal	$e^{\mu t + \frac{t^2 \sigma^2}{2}}$
Gamma	$(1 - \beta t)^{-\alpha}$
Exponential	$(1-\beta t)^{-1}$
Chi-square	$(1-2t)^{-\frac{\nu}{2}}$
Beta	No closed-form MGF.

Note that exponential is just gamma with $\alpha := 1$, and chi-square is gamma with $\alpha := \frac{\nu}{2}$ and $\beta := 2$.

Useful Formulas with MGFs

• Let Z := aY + b. Then

$$m_Z(t) = e^{bt} m_Y(at) \,.$$

• Suppose Y_1 and Y_2 are independent variables and $Z := Y_1 + Y_2$. Then

 $m_Z(t) = m_{Y_1}(t)m_{Y_2}(t)$

How to use MGFs

- Given a function $U(Y_1, \ldots, Y_n)$, find its MGF $m_U(t)$.
- Use the useful formulas on the previous slide.
- Then compare it against your charts to see if you recognize it as a known distribution.

Example I

Let Y be a standard normal variable. Find the density function of $U := Y^2$.

$$m_{Y^2}(t) := E\left[e^{tY^2}\right]$$
$$:= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ty^2} e^{-\frac{y^2}{2}} dy$$
Combine exponents:
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}(1-2t)} dy$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}\left(\frac{1}{1-2t}\right)} dy$$

To simplify this, recall that $\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{y^2}{2\sigma^2}}\,dy = \int_{-\infty}^{\infty}e^{-\frac{y^2}{2\sigma^2}}\,dy$

 $\int (\text{normal density}) = 1 \text{ for any temporary } \sigma.$ Take temporary $\sigma := \frac{1}{\sqrt{1-2t}}$:

$$= \sigma \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2\sigma^2}} dy$$
$$= \sigma$$
$$= (1-2t)^{-\frac{1}{2}}$$

From your chart of mgfs, this is chi-square with $\nu = 1$, so we have the density:

$$\textbf{Gamma}: f(y):=\frac{y^{\alpha-1}e^{-\frac{y}{\beta}}}{\beta^{\alpha}\Gamma(\alpha)}, 0\leq y<\infty$$

 χ^2 is gamma with $\alpha := \frac{\nu}{2}, \, \beta := 2.$

$$f_U(u) = \frac{u^{-\frac{1}{2}}e^{-\frac{u}{2}}}{\sqrt{2}\Gamma(\frac{1}{2})}, u > 0 \quad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \\ = \frac{u^{-\frac{1}{2}}e^{-\frac{u}{2}}}{\sqrt{2\pi}}, u > 0$$

That's one reason why chi-square is important.

Example II

Let Y_1, Y_2 be independent standard normal variables. Find the density function of $U := Y_1^2 + Y_2^2$.

$$m_U(t) = m_{Y_1^2 + Y_2^2}(t)$$

= $m_{Y_1^2}(t)m_{Y_2^2}(t)$
= $(1 - 2t)^{-\frac{1}{2}}(1 - 2t)^{-\frac{1}{2}}$ from above
= $(1 - 2t)^{-1}$

Looking at the chart, this is chi-square with $\nu = 2$.

$$\mathbf{Gamma}: f(y) := \frac{y^{\alpha - 1} e^{-\frac{y}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}, 0 \le y < \infty$$

 $\chi^{2} \text{ is gamma with } \alpha := \frac{\nu}{2}, \ \beta := 2.$ So $f_{U}(u) = \frac{e^{-\frac{u}{2}}}{2}, u > 0$. (It's also exponential with $\beta = 2.$) In general, if $Z_{1}, \ldots, Z_{n} \sim N(0, 1)$, then $\sum_{i=1}^{n} Z_{i}^{2} \sim \chi^{2}(n)$.

That's one reason why chi-square is important.

Example III

Let Y_1, \ldots, Y_r be independent binomial variables representing n_1, \ldots, n_r flips of a coin that comes up heads with probability p. Find the probability

function of $U := Y_1 + \dots + Y_r$.

Note that $0 \le u \le n_1 + \cdots + n_r$.

$$m_{Y_i}(t) = \left[pe^t + (1-p) \right]^{n_i}$$

$$m_U(t) := m_{Y_1 + \dots + Y_r}(t)$$

$$= m_{Y_1}(t) \cdots m_{Y_r}(t)$$

$$= \left[pe^t + (1-p) \right]^{n_1} \cdots \left[pe^t + (1-p) \right]^{n_r}$$

$$= \left[pe^t + (1-p) \right]^{n_1 + \dots + n_r}$$

This is binomial with probability p and $n := n_1 + \cdots + n_r$, so

$$p(u) = \binom{n_1 + \dots + n_r}{u} p^u q^{n_1 + \dots + n_r - y}, 0 \le u \le n_1 + \dots + n_r$$

Example IV

Let Y_1 and Y_2 be independent Poisson variables with means λ_1 and λ_2 . Find the probability function of $U := Y_1 + Y_2$.

$$m_{Y_i}(t) = e^{\lambda_i (e^t - 1)}$$

$$m_U(t) := m_{Y_1 + Y_2}(t)$$

$$= m_{Y_1}(t)m_{Y_2}(t)$$

$$= e^{\lambda_1 (e^t - 1)}e^{\lambda_2 (e^t - 1)}$$

$$= e^{(\lambda_1 + \lambda_2)(e^t - 1)}$$

This is Poisson with mean $\lambda_1 + \lambda_2$. (If you expect to see λ_1 cars at an intersection and λ_2 trucks, you expect to see $\lambda_1 + \lambda_2$ vehicles total.)

$$p(y) = \frac{\lambda^{y} e^{-\lambda}}{y!}$$

$$p(u) = \frac{\left(\lambda_{1} + \lambda_{2}\right)^{u} e^{-\lambda_{1} - \lambda_{2}}}{u!}, 0 \le u < \infty$$

Example V

Let Y_1, \ldots, Y_n be independent normal variables, each with mean μ and variance σ^2 . Find the distribution of $\overline{Y} := \frac{1}{n}(Y_1 + \cdots + Y_n)$. Let $Y := Y_1 + \dots + Y_n$. $m_Y(t) = m_{Y_1}(t) \cdots m_{Y_n}(t)$ $= \left(e^{\mu t + \frac{\sigma^2 t^2}{2}}\right)^n$ $= e^{\mu n t + \frac{\sigma^2 t^2 n}{2}}$ $m_{aY+b}(t) = e^{bt} m_Y(at)$ $m_{\overline{Y}} = m_Y\left(\frac{t}{n}\right) = e^{\mu t + \frac{\sigma^2 t^2}{2n}}$

This is a normal distribution with mean μ , variance $\frac{\sigma^2}{n}$

Example VI

Let Y_1 and Y_2 be independent exponential variables, each with mean 3. Find the density function of $U := Y_1 + Y_2$.

$$m_{Y_i}(t) = (1 - 3t)^{-1}$$

$$m_U(t) := m_{Y_1 + Y_2}(t)$$

$$= m_{Y_1}(t)m_{Y_2}(t)$$

$$= (1 - 3t)^{-1}(1 - 3t)^{-1} = (1 - 3t)^{-2}$$

This is gamma with $\alpha = 2, \beta = 3$:

$$f_U(u) = \frac{u^{\alpha - 1} e^{-\frac{u}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}$$
$$= \frac{u e^{-\frac{u}{3}}}{3^2 \Gamma(2)}$$
$$= \frac{1}{9} u e^{-\frac{u}{3}}, 0 \le u < \infty$$