XXXII. Moment-Generating Functions

Premise

- We have several random variables, Y_{1}, Y_{2}, etc.
- We want to study functions of them: $U\left(Y_{1}, \ldots, Y_{n}\right)$.
- Before, we calculated the mean of U and the variance, but that's not enough to determine the whole distribution of U.

Goal

- We want to find the full distribution function $F_{U}(u):=P(U \leq u)$.
- Then we can find the density function $f_{U}(u)=F_{U}^{\prime}(u)$.
- We can calculate probabilities:

$$
P(a \leq U \leq b)=\int_{a}^{b} f_{U}(u) d u=F_{U}(b)-F_{U}(a)
$$

Three methods

1. Distribution functions. (Two lectures ago, using geometric methods from Calculus III.)
2. Transformations. (Previous lecture, using methods from Calculus I.)

Will Murray's Probability, XXXII. Moment-Generating Functions 2
3. Moment-generating functions. (This lecture.)

Review of Moment-Generating Functions

- Recall: The moment-generating function for a random variable Y is

$$
m_{Y}(t):=E\left(e^{t Y}\right) .
$$

- The MGF is a function of t (not y).

See previous lecture on MGFs.

MGFs for the Discrete Distributions
Distribution MGF

Binomial

$$
\left[p e^{t}+(1-p)\right]^{n}
$$

Geometric

$$
\frac{p e^{t}}{1-(1-p) e^{t}}
$$

Negative binomial $\left[\frac{p e^{t}}{1-(1-p) e^{t}}\right]^{r}$
Hypergeometric No closed-form MGF.

Poisson

$$
e^{\lambda\left(e^{t}-1\right)}
$$

All are functions of t.
In the first three, we could substitute $q:=1-p$.

MGFs for the Continuous Distributions

Distribution MGF

Uniform

$$
\frac{e^{t \theta_{2}}-e^{t \theta_{1}}}{t\left(\theta_{2}-\theta_{1}\right)}
$$

Normal

$$
e^{\mu t+\frac{t^{2} \sigma^{2}}{2}}
$$

Gamma

$$
(1-\beta t)^{-\alpha}
$$

Exponential $\quad(1-\beta t)^{-1}$
Chi-square $\quad(1-2 t)^{-\frac{\nu}{2}}$
Beta No closed-form MGF.

Note that exponential is just gamma with $\alpha:=1$, and chi-square is gamma with $\alpha:=\frac{\nu}{2}$ and $\beta:=2$.

- Let $Z:=a Y+b$. Then

$$
m_{Z}(t)=e^{b t} m_{Y}(a t) \text {. }
$$

- Suppose Y_{1} and Y_{2} are independent variables and $Z:=Y_{1}+Y_{2}$. Then

$$
m_{Z}(t)=m_{Y_{1}}(t) m_{Y_{2}}(t)
$$

How to use MGFs

- Given a function $U\left(Y_{1}, \ldots, Y_{n}\right)$, find its MGF $m_{U}(t)$.
- Use the useful formulas on the previous slide.
- Then compare it against your charts to see if you recognize it as a known distribution.

Example I

Let Y be a standard normal variable. Find the density function of $U:=Y^{2}$.

$$
\begin{aligned}
m_{Y^{2}}(t) & :=E\left[e^{t Y^{2}}\right] \\
& :=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t y^{2}} e^{-\frac{y^{2}}{2}} d y
\end{aligned}
$$

Combine exponents: $\quad=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}(1-2 t)} d y$

$$
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2\left(\frac{1}{1-2 t}\right)}} d y
$$

To simplify this, recall that $\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2 \sigma^{2}}} d y=$ $\int($ normal density $)=1$ for any temporary σ.
Take temporary $\sigma:=\frac{1}{\sqrt{1-2 t}}$:

$$
\begin{aligned}
& =\sigma \frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2 \sigma^{2}}} d y \\
& =\sigma \\
& =(1-2 t)^{-\frac{1}{2}}
\end{aligned}
$$

From your chart of mgfs, this is chi-square with $\nu=1$, so we have the density:

$$
\text { Gamma }: f(y):=\frac{y^{\alpha-1} e^{-\frac{y}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}, 0 \leq y<\infty
$$

χ^{2} is gamma with $\alpha:=\frac{\nu}{2}, \beta:=2$.

$$
\begin{aligned}
f_{U}(u) & =\frac{u^{-\frac{1}{2}} e^{-\frac{u}{2}}}{\sqrt{2} \Gamma\left(\frac{1}{2}\right)}, u>0 \quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \\
& =\frac{u^{-\frac{1}{2}} e^{-\frac{u}{2}}}{\sqrt{2 \pi}}, u>0
\end{aligned}
$$

That's one reason why chi-square is important.

Example II

Let Y_{1}, Y_{2} be independent standard normal variables. Find the density function of $U:=Y_{1}^{2}+Y_{2}^{2}$.

$$
\begin{aligned}
m_{U}(t) & =m_{Y_{1}^{2}+Y_{2}^{2}}(t) \\
& =m_{Y_{1}^{2}}(t) m_{Y_{2}^{2}}(t) \\
& =(1-2 t)^{-\frac{1}{2}}(1-2 t)^{-\frac{1}{2}} \quad \text { from above } \\
& =(1-2 t)^{-1}
\end{aligned}
$$

Looking at the chart, this is chi-square with $\nu=2$.

Gamma : $f(y):=\frac{y^{\alpha-1} e^{-\frac{y}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}, 0 \leq y<\infty$
χ^{2} is gamma with $\alpha:=\frac{\nu}{2}, \beta:=2$.
So $f_{U}(u)=\frac{e^{-\frac{u}{2}}}{2}, u>0$. (It's also exponential with $\beta=2$.)
In general, if $Z_{1}, \ldots, Z_{n} \sim N(0,1)$, then $\sum_{i=1}^{n} Z_{i}^{2} \sim \chi^{2}(n)$.
That's one reason why chi-square is important.

Example III

Let Y_{1}, \ldots, Y_{r} be independent binomial variables representing n_{1}, \ldots, n_{r} flips of a coin that comes up heads with probability p. Find the probability

Will Murray's Probability, XXXII. Moment-Generating Functions 7

function of $U:=Y_{1}+\cdots+Y_{r}$.
Note that $0 \leq u \leq n_{1}+\cdots+n_{r}$.

$$
\begin{aligned}
m_{Y_{i}}(t) & =\left[p e^{t}+(1-p)\right]^{n_{i}} \\
m_{U}(t) & :=m_{Y_{1}+\cdots+Y_{r}}(t) \\
& =m_{Y_{1}}(t) \cdots m_{Y_{r}}(t) \\
& =\left[p e^{t}+(1-p)\right]^{n_{1}} \cdots\left[p e^{t}+(1-p)\right]^{n_{r}} \\
& =\left[p e^{t}+(1-p)\right]^{n_{1}+\cdots+n_{r}}
\end{aligned}
$$

This is binomial with probability p and $n:=n_{1}+$ $\cdots+n_{r}$, so

$$
p(u)=\binom{n_{1}+\cdots+n_{r}}{u} p^{u} q^{n_{1}+\cdots+n_{r}-y}, 0 \leq u \leq n_{1}+\cdots+n_{r} .
$$

Example IV

Let Y_{1} and Y_{2} be independent Poisson variables with means λ_{1} and λ_{2}. Find the probability function of $U:=Y_{1}+Y_{2}$.

$$
\begin{aligned}
m_{Y_{i}}(t) & =e^{\lambda_{i}\left(e^{t}-1\right)} \\
m_{U}(t) & :=m_{Y_{1}+Y_{2}}(t) \\
& =m_{Y_{1}}(t) m_{Y_{2}}(t) \\
& =e^{\lambda_{1}\left(e^{t}-1\right)} e^{\lambda_{2}\left(e^{t}-1\right)} \\
& =e^{\left(\lambda_{1}+\lambda_{2}\right)\left(e^{t}-1\right)}
\end{aligned}
$$

This is Poisson with mean $\lambda_{1}+\lambda_{2}$. (If you expect to see λ_{1} cars at an intersection and λ_{2} trucks, you expect to see $\lambda_{1}+\lambda_{2}$ vehicles total.)

$$
\begin{aligned}
& p(y)=\frac{\lambda^{y} e^{-\lambda}}{y!} \\
& p(u)=\frac{\left(\lambda_{1}+\lambda_{2}\right)^{u} e^{-\lambda_{1}-\lambda_{2}}}{u!}, 0 \leq u<\infty
\end{aligned}
$$

Example V

Let Y_{1}, \ldots, Y_{n} be independent normal variables, each with mean μ and variance σ^{2}. Find the distribution of $\bar{Y}:=\frac{1}{n}\left(Y_{1}+\cdots+Y_{n}\right)$.

Let $Y:=Y_{1}+\cdots+Y_{n}$.

$$
\begin{aligned}
m_{Y}(t) & =m_{Y_{1}}(t) \cdots m_{Y_{n}}(t) \\
& =\left(e^{\mu t+\frac{\sigma^{2} t^{2}}{2}}\right)^{n} \\
& =e^{\mu n t+\frac{\sigma^{2} t^{2} n}{2}} \\
m_{a Y+b}(t) & =e^{b t} m_{Y}(a t) \\
m_{\bar{Y}} & =m_{Y}\left(\frac{t}{n}\right)=e^{\mu t+\frac{\sigma^{2} t^{2}}{2 n}}
\end{aligned}
$$

This is a normal distribution with mean μ, variance $\frac{\sigma^{2}}{n}$.

Example VI

Let Y_{1} and Y_{2} be independent exponential variables, each with mean 3 . Find the density function of $U:=Y_{1}+Y_{2}$.

$$
\begin{aligned}
m_{Y_{i}}(t) & =(1-3 t)^{-1} \\
m_{U}(t) & :=m_{Y_{1}+Y_{2}}(t) \\
& =m_{Y_{1}}(t) m_{Y_{2}}(t) \\
& =(1-3 t)^{-1}(1-3 t)^{-1}=(1-3 t)^{-2}
\end{aligned}
$$

This is gamma with $\alpha=2, \beta=3$:

$$
\begin{aligned}
f_{U}(u) & =\frac{u^{\alpha-1} e^{-\frac{u}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)} \\
& =\frac{u e^{-\frac{u}{3}}}{3^{2} \Gamma(2)} \\
& =\frac{1}{9} u e^{-\frac{u}{3}}, 0 \leq u<\infty
\end{aligned}
$$

