XXXI. Transformations

Premise

- We have several random variables, Y_{1}, Y_{2}, etc.
- We want to study functions of them: $U\left(Y_{1}, \ldots, Y_{n}\right)$.
- Before, we calculated the mean of U and the variance, but that's not enough to determine the whole distribution of U.

Goal

- We want to find the full distribution function $F_{U}(u):=P(U \leq u)$.
- Then we can find the density function $f_{U}(u)=F_{U}^{\prime}(u)$.
- We can calculate probabilities:

$$
P(a \leq U \leq b)=\int_{a}^{b} f_{U}(u) d u=F_{U}(b)-F_{U}(a)
$$

Three methods

1. Distribution functions. (Last lecture, using geometric methods from Calculus III.)
2. Transformations. (This lecture, using methods from Calculus I.)
3. Moment-generating functions. (Next lecture.)

Requirements for Transformation Method

- The transformation method only works for single-variable situations, that is, $U=h(Y)$.
- h must be a strictly monotonic function, which means strictly increasing or strictly decreasing.
- Example: All linear functions $U:=a Y+b$ qualify (unless $a=0$).
- If h is monotonic, then it is invertible: We can say that $Y=h^{-1}(U)$.

Not $h\left(Y_{1}, Y_{2}\right)$.
[Graph monotonic.]
Be careful: This is an inverse function, not an exponent.

Formula for Transformations

- First solve $U=h(Y)$ for $Y=h^{-1}(U)$.
- Then use the density function $f_{Y}(y)$ for Y, to get the density function for U :

$$
f_{U}(u)=f_{Y}\left(h^{-1}(u)\right)\left|\frac{d}{d u} h^{-1}(u)\right|
$$

Example I

Let Y have density function $f_{Y}(y):=\frac{3}{2} y^{2}$, $-1 \leq y \leq 1$. Determine whether the function $U:=3-2 Y$ is monotonic, and if so, find its inverse.
(Graph.) First note that $1 \leq u \leq 5$. Linear implies monotonic. (Graph.)

$$
\begin{aligned}
U & =h(Y)=3-2 Y \\
2 Y & =3-U \\
Y & =\frac{3-U}{2}=h^{-1}(U)
\end{aligned}
$$

Example II

As in Example I, let Y have density function $f_{Y}(y):=\frac{3}{2} y^{2},-1 \leq y \leq 1$. Find the density function for $U:=3-2 Y$.
(Graph.) Note that $1 \leq u \leq 5$.

$$
f_{U}(u)=f_{Y}\left(h^{-1}(u)\right)\left|\frac{d}{d u} h^{-1}(u)\right|
$$

$$
\begin{aligned}
U & =3-2 Y=: h(Y) \\
Y & =h^{-1}(U)=\frac{3-U}{2} \\
f_{U}(u) & =f_{Y}\left(h^{-1}(u)\right)\left|\frac{d}{d u} h^{-1}(u)\right| \\
& =\frac{3}{2}\left(\frac{3-u}{2}\right)^{2}\left|-\frac{1}{2}\right| \\
& =\frac{3}{4}\left(\frac{3-u}{2}\right)^{2}, 1 \leq u \leq 5
\end{aligned}
$$

This agrees with (but was quicker than) our earlier solution using distribution functions (Example I of previous lecture), sans integration.

Example III

Let Y have density function $f_{Y}(y):=\frac{3}{2} y^{2}$, $-1 \leq y \leq 1$. Determine whether the function $U:=Y^{2}$ is monotonic, and if so, find its inverse.
(Graph.) U is not monotonic on $[-1,1]$, so we cannot find its inverse. (It would be monotonic on $[0,1]$.)

Example IV

Major earthquakes in California occur once every two decades on average, according to an exponential distribution. The magnitude of an earthquake is $1+Y^{2}$, where Y is the time since the last earthquake. Find the density function for the magnitude of the next earthquake.
$\beta=2 \Longrightarrow f_{Y}(y)=\frac{1}{2} e^{-\frac{y}{2}}, 0 \leq y<\infty . \quad U=$ $Y^{2}+1=: h(Y)$. Note that this is increasing on $y \in$ $[0, \infty)$. (We couldn't use this method if Y were normally distributed!) $Y=h^{-1}(U)=\sqrt{U-1}$. (If this were negative, take absolute value of it.)

$$
f_{U}(u)=f_{Y}\left(h^{-1}(u)\right)\left|\frac{d}{d u} h^{-1}(u)\right|
$$

$$
\begin{aligned}
f_{U}(u) & =f_{Y}\left(h^{-1}(u)\right)\left|\frac{d}{d u} h^{-1}(u)\right|, 1 \leq u<\infty \\
& =\frac{1}{2} e^{-\frac{\sqrt{u-1}}{2}} \frac{1}{2 \sqrt{u-1}} \\
& =\frac{1}{4 \sqrt{u-1}} e^{-\frac{\sqrt{u-1}}{2}}
\end{aligned}
$$

Save this for use in Example V.

Example V

Use the density function found in Example IV to find the expected magnitude of the next earthquake. Check your answer using the properties of the exponential distribution.

Will Murray's Probability, XXXI. Transformations 6

$$
\begin{aligned}
f_{U}(u) & =\frac{1}{4 \sqrt{u-1}} e^{-\frac{\sqrt{u-1}}{2}} \\
E(U) & :=\int_{1}^{\infty} \frac{u}{4 \sqrt{u-1}} e^{-\frac{\sqrt{u-1}}{2}} d u \quad \text { Let } \quad d s=\frac{1}{4 \sqrt{u-1}} d u \\
& =\int_{0}^{\infty}\left(4 s^{2}+1\right) e^{-s} d s \quad \text { Use parts. } \\
& =9
\end{aligned}
$$

As a check, $E(U)=E\left(Y^{2}\right)+1=\sigma^{2}+E(Y)^{2}+1=$ $\beta^{2}+\beta^{2}+1=9$. [So prepare yourself for a huge earthquake!]

Example VI

Let Y have a beta distribution with $\alpha=\beta=2$, and let $U:=Y^{2}+2 Y+1$. Find the density function $f_{U}(u)$, including the range of possible values for u.

$$
\begin{aligned}
f_{Y}(y) & :=\frac{y^{\alpha-1}(1-y)^{\beta-1}}{B(\alpha, \beta)} \\
& =\frac{\Gamma(4)}{\Gamma(2) \Gamma(2)} y(1-y) \\
& =6\left(y-y^{2}\right)
\end{aligned}
$$

$$
U=h(Y)=(Y+1)^{2}
$$

$$
h^{-1}(u)=\sqrt{U}-1
$$

$$
f_{U}(u)=f_{Y}\left(h^{-1}(u)\right)\left|\frac{d}{d u} h^{-1}(u)\right|
$$

$$
=f_{Y}(\sqrt{u}-1) \frac{1}{2 \sqrt{u}}
$$

$$
=6\left[\sqrt{u}-1-(\sqrt{u}-1)^{2}\right] \frac{1}{2 \sqrt{u}}
$$

$$
=3(\sqrt{u}-1-u+2 \sqrt{u}-1) \frac{1}{\sqrt{u}}
$$

$$
=3\left(3-\sqrt{u}-\frac{2}{\sqrt{u}}\right), 1 \leq u \leq 4
$$

Check: $\quad E(U):=\int_{u=1}^{u=4} 3 u\left(3-\sqrt{u}-\frac{2}{\sqrt{u}}\right) d u=\frac{23}{10}$

