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XXXI. Transformations

Premise

• We have several random variables, Y1, Y2,
etc.

• We want to study functions of them:
U (Y1, . . . , Yn).

• Before, we calculated the mean of U and the
variance, but that’s not enough to determine
the whole distribution of U .

Goal

• We want to find the full distribution
function FU(u) := P (U ≤ u).

• Then we can find the density function
fU(u) = F ′U(u).

• We can calculate probabilities:

P (a ≤ U ≤ b) =

∫ b

a

fU(u) du = FU(b)−FU(a)

Three methods

1. Distribution functions. (Last lecture, using
geometric methods from Calculus III.)

2. Transformations. (This lecture, using
methods from Calculus I.)
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3. Moment-generating functions. (Next
lecture.)

Requirements for Transformation Method

• The transformation method only works for
single-variable situations, that is, U = h(Y ).

• h must be a strictly monotonic function,
which means strictly increasing or strictly
decreasing.

• Example: All linear functions U := aY + b
qualify (unless a = 0).

• If h is monotonic, then it is invertible: We
can say that Y = h−1(U).

Not h (Y1, Y2).
[Graph monotonic.]
Be careful: This is an inverse function, not an
exponent.

Formula for Transformations

• First solve U = h(Y ) for Y = h−1(U).

• Then use the density function fY (y) for Y ,
to get the density function for U :

fU(u) = fY
(
h−1(u)

) ∣∣∣∣ dduh−1(u)

∣∣∣∣
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Example I

Let Y have density function fY (y) :=
3

2
y2,

−1 ≤ y ≤ 1. Determine whether the function
U := 3− 2Y is monotonic, and if so, find its
inverse.

(Graph.) First note that 1 ≤ u ≤ 5.
Linear implies monotonic. (Graph.)

U = h(Y ) = 3− 2Y

2Y = 3− U

Y =
3− U

2
= h−1(U)

Example II

As in Example I, let Y have density function

fY (y) :=
3

2
y2, −1 ≤ y ≤ 1. Find the density

function for U := 3− 2Y .
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(Graph.) Note that 1 ≤ u ≤ 5.

fU(u) = fY
(
h−1(u)

) ∣∣∣∣ dduh−1(u)

∣∣∣∣
U = 3− 2Y =: h(Y )

Y = h−1(U) =
3− U

2

fU(u) = fY
(
h−1(u)

) ∣∣∣∣ dduh−1(u)

∣∣∣∣
=

3

2

(
3− u

2

)2 ∣∣∣∣−1

2

∣∣∣∣
=

3

4

(
3− u

2

)2

, 1 ≤ u ≤ 5

This agrees with (but was quicker than) our earlier
solution using distribution functions (Example I
of previous lecture), sans integration.

Example III

Let Y have density function fY (y) :=
3

2
y2,

−1 ≤ y ≤ 1. Determine whether the function
U := Y 2 is monotonic, and if so, find its inverse.

(Graph.) U is not monotonic on [−1, 1], so we
cannot find its inverse. (It would be monotonic
on [0, 1].)

Example IV



Will Murray’s Probability, XXXI. Transformations 5

Major earthquakes in California occur once
every two decades on average, according to an
exponential distribution. The magnitude of an
earthquake is 1 + Y 2, where Y is the time since
the last earthquake. Find the density function for
the magnitude of the next earthquake.

β = 2 =⇒ fY (y) =
1

2
e−

y
2 , 0 ≤ y < ∞. U =

Y 2+1 =: h(Y ). Note that this is increasing on y ∈
[0,∞). (We couldn’t use this method if Y were
normally distributed!) Y = h−1(U) =

√
U − 1.

(If this were negative, take absolute value of it.)

fU(u) = fY
(
h−1(u)

) ∣∣∣∣ dduh−1(u)

∣∣∣∣
fU(u) = fY

(
h−1(u)

) ∣∣∣∣ dduh−1(u)

∣∣∣∣ , 1 ≤ u <∞

=
1

2
e−
√
u−1
2

1

2
√
u− 1

=
1

4
√
u− 1

e−
√

u−1
2

Save this for use in Example V.

Example V

Use the density function found in Example IV
to find the expected magnitude of the next
earthquake. Check your answer using the
properties of the exponential distribution.
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fU(u) =
1

4
√
u− 1

e−
√

u−1
2

E(U) :=

∫ ∞
1

u

4
√
u− 1

e−
√
u−1
2 du

Let s :=

√
u− 1

2
,

ds =
1

4
√
u− 1

du.

=

∫ ∞
0

(
4s2 + 1

)
e−s ds Use parts.

= 9

As a check, E(U) = E
(
Y 2
)
+1 = σ2+E(Y )2+1 =

β2 + β2 + 1 = 9 . [So prepare yourself for a huge
earthquake!]

Example VI

Let Y have a beta distribution with α = β = 2,
and let U := Y 2 + 2Y + 1. Find the density
function fU(u), including the range of possible
values for u.
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fY (y) :=
yα−1(1− y)β−1

B(α, β)

=
Γ(4)

Γ(2)Γ(2)
y(1− y)

= 6
(
y − y2

)
U = h(Y ) = (Y + 1)2

h−1(u) =
√
U − 1

fU(u) = fY
(
h−1(u)

) ∣∣∣∣ dduh−1(u)

∣∣∣∣
= fY

(√
u− 1

) 1

2
√
u

= 6
[√

u− 1−
(√

u− 1
)2] 1

2
√
u

= 3
(√

u− 1− u+ 2
√
u− 1

) 1√
u

= 3

(
3−
√
u− 2√

u

)
, 1 ≤ u ≤ 4

Check: E(U) :=

∫ u=4

u=1

3u

(
3−
√
u− 2√

u

)
du =

23

10


