Will Murray's Probability, XXIX. Covariance, Correlation, and Linear Functions 1
XXIX. Covariance, Correlation, and Linear

Functions

## Definition and Formulas for Covariance

- Definition: The covariance of two random variables $Y_{1}$ and $Y_{2}$ is

$$
\operatorname{Cov}\left(Y_{1}, Y_{2}\right):=E\left[\left(Y_{1}-\mu_{1}\right)\left(Y_{2}-\mu_{2}\right)\right],
$$

where $\mu_{1}$ and $\mu_{2}$ are the means of $Y_{1}$ and $Y_{2}$, respectively.

- Useful formulas to calculate covariance:

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{1}, Y_{2}\right) & =E\left(Y_{1} Y_{2}\right)-E\left(Y_{1}\right) E\left(Y_{2}\right) \\
\operatorname{Cov}\left(Y_{1}, Y_{1}\right) & =V\left(Y_{1}\right) \\
\operatorname{Cov}\left(c Y_{1}, c Y_{2}\right) & =c^{2} \operatorname{Cov}\left(Y_{1}, Y_{2}\right)
\end{aligned}
$$

## Intuition for Covariance

- Covariance is a measure of dependence.
- Dependence doesn't necessarily mean that the variables do the same thing; it means that knowing the value of one gives you more information about the other.
- If $Y_{1}$ moves with $Y_{2}$, then Cov is positive.
- If $Y_{1}$ moves consistently against $Y_{2}$, then Cov is negative.

Either one indicates dependence! It's like a child who always does the opposite of what you say: You can still control him by reverse psychology, so he is still dependent on you.

## Independence Theorem

- Theorem: If $Y_{1}$ and $Y_{2}$ are independent, then $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=0$.
- The converse is not true:
- It is possible to have $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=0$ with $Y_{1}$ and $Y_{2}$ dependent.

See Example II for a counterexample.

## Correlation Coefficient

- Let $Y_{1}$ and $Y_{2}$ be random variables with standard deviations $\sigma_{1}$ and $\sigma_{2}$.
- Define the correlation coefficient $\rho$ :

$$
\rho:=\frac{\operatorname{Cov}\left(Y_{1}, Y_{2}\right)}{\sigma_{1} \sigma_{2}}
$$

- Then $\rho\left(c Y_{1}, c Y_{2}\right)=\rho\left(Y_{1}, Y_{2}\right)$. So $\rho$ is scale-independent.
- We always have $-1 \leq \rho \leq 1$.


## Linear Functions of Random Variables

- Suppose $Y_{1}, \ldots, Y_{n}$ are random variables with means $\mu_{1}, \ldots, \mu_{n}$, variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$.

1. The expected value $E\left(a_{1} Y_{1}+\cdots+a_{n} Y_{n}\right)$ is

$$
a_{1} \mu_{1}+\cdots+a_{n} \mu_{n}
$$

2. The variance $V\left(a_{1} Y_{1}+\cdots+a_{n} Y_{n}\right)$ is

$$
a_{1}^{2} \sigma_{1}^{2}+\cdots+a_{n}^{2} \sigma_{n}^{2}+2 \sum_{i>j} a_{i} a_{j} \operatorname{Cov}\left(Y_{i}, Y_{j}\right)
$$

## Linear Functions of Random Variables

- Suppose $Y_{1}, \ldots, Y_{n}$ and $X_{1}, \ldots, X_{m}$ are random variables.

3. The covariance of $a_{1} Y_{1}+\cdots+a_{n} Y_{n}$ and $b_{1} X_{1}+\cdots+b_{m} X_{m}$ is
$\operatorname{Cov}\left(\sum a_{i} Y_{i}, \sum b_{j} X_{j}\right)=\sum_{i, j} a_{i} b_{j} \operatorname{Cov}\left(Y_{i}, X_{j}\right)$.

## Example I

Let $f\left(y_{1}, y_{2}\right): \equiv 1$ over the triangle with corners at $(-1,0),(0,1)$, and $(1,0)$. Calculate $E\left(Y_{1}\right), E\left(Y_{2}\right)$ and $E\left(Y_{1} Y_{2}\right)$.

Will Murray's Probability, XXIX. Covariance, Correlation, and Linear Functions 4
(Graph.)

$$
\begin{aligned}
\mu_{1} & :=E\left(Y_{1}\right) \\
& :=\int_{y_{2}=0}^{y_{2}=1} \int_{y_{1}=y_{2}-1}^{y_{1}=1-y_{2}} y_{1} \cdot 1 d y_{1} d y_{2} \\
& =\cdots \quad \text { (We should have known this } \\
& =0 \quad \text { from symmetry.) } \\
\mu_{2} & :=E\left(Y_{2}\right) \quad \\
& :=\int_{y_{2}=0}^{y_{2}=1} \int_{y_{1}=y_{2}-1}^{y_{1}=1-y_{2}} y_{2} \cdot 1 d y_{1} d y_{2} \\
& =\cdots \quad \text { This seems reasonable. } \\
& =\frac{1}{3} \quad \begin{array}{l}
\text { Engineers might recognize it } \\
\text { as the moment of a triangle. } \\
y_{1}=y_{2}
\end{array} \\
E\left(Y_{1} Y_{2}\right) & :=\int_{y_{2}=0}^{y_{2}=1} \int_{y_{1}=y_{2}-1}^{y_{1}=1-y_{2}} y_{2} \cdot 1 d y_{1} d y_{2} \\
& =\cdots \text { Still not surprising from } \\
& =0 \quad \text { symmetry. }
\end{aligned}
$$

## Example II

As in Example I, let $f\left(y_{1}, y_{2}\right): \equiv 1$ over the triangle with corners at $(-1,0),(0,1),(1,0)$. Compute $\operatorname{Cov}\left(Y_{1}, Y_{2}\right) . \quad$ Are $\quad Y_{1}$ and $Y_{2}$ independent?
(Graph.) $\quad \operatorname{Cov}\left(Y_{1}, Y_{2}\right)=E\left(Y_{1} Y_{2}\right)-$ $E\left(Y_{1}\right) E\left(Y_{2}\right)=0 \cdot \frac{1}{3}-0=0$.
But we know $Y_{1}$ and $Y_{2}$ are not independent, because the region is not rectangular. (For example, if you know $Y_{1}=\frac{3}{4}$, then you know $Y_{2}$ cannot be $\frac{1}{2}$. [Graph.]) So our theorem above is not iff.

## Example III

Let $Y_{1}$ and $Y_{2}$ be independent variables with means and variances $\mu_{1}=7, \mu_{2}=5, \sigma_{1}^{2}=4$, $\sigma_{2}^{2}=9$. Let $U_{1}:=Y_{1}+2 Y_{2}$ and $U_{2}:=Y_{1}-Y_{2}$. Calculate $V\left(U_{1}\right)$ and $V\left(U_{2}\right)$.
$V\left(U_{1}\right)=4+2^{2} 9+2 \cdot 1 \cdot 2 \operatorname{Cov}\left(Y_{1}, Y_{1}\right)=40+0=40$ by independence. $V\left(U_{2}\right)=4+(-1)^{2} 9+2 \cdot 1$. $2 \operatorname{Cov}\left(Y_{1}, Y_{1}\right)=13+0=13$ by independence.

## Example IV

As in Example III, let $Y_{1}$ and $Y_{2}$ be independent variables with means and variances $\mu_{1}=7$, $\mu_{2}=5, \sigma_{1}^{2}=4, \sigma_{2}^{2}=9$. Let $U_{1}:=Y_{1}+2 Y_{2}$ and $U_{2}:=Y_{1}-Y_{2}$. Calculate $\operatorname{Cov}\left(U_{1}, U_{2}\right)$ and $\rho\left(U_{1}, U_{2}\right)$.
(a)

$$
\begin{aligned}
& \quad \begin{aligned}
& \operatorname{Cov}\left(U_{1}, U_{2}\right)=\operatorname{Cov}\left(Y_{1}, Y_{1}\right)-\operatorname{Cov}\left(Y_{1}, Y_{2}\right)+2 \operatorname{Cov}\left(Y_{2}, Y_{1}\right)-2 \operatorname{Cov}\left(Y_{2}, Y_{2}\right) \\
&=V\left(Y_{1}\right)-0+2 \cdot 0-2 V\left(Y_{2}\right) \\
&=4-2 \cdot 9 \\
&=-14 \\
& \text { (b) } \rho\left(U_{1}, U_{2}\right)=\quad \frac{-14}{\sqrt{40} \sqrt{13}}= \\
&-\frac{7}{\sqrt{130}} \approx-0.614 \quad
\end{aligned}
\end{aligned}
$$

Note that $-1 \leq \rho \leq 1$.

## Example V

Suppose $Y_{i}$ are independent variables with mean $\mu$ and variance $\sigma^{2}$. Find the mean and variance of the average $\bar{Y}:=\frac{1}{n} Y_{1}+\cdots+\frac{1}{n} Y_{n}$.
(a) $E(\bar{Y})=\frac{1}{n} \mu+\cdots+\frac{1}{n} \mu=\mu$. No surprise.
(b)

$$
\begin{aligned}
V(\bar{Y})= & a_{1}^{2} V\left(Y_{1}\right)+\cdots+a_{n}^{2} V\left(Y_{n}\right)+2 \sum_{i>j} a_{i} a_{j} \operatorname{Cov}\left(Y_{i}, Y_{j}\right) \\
= & \frac{1}{n^{2}} \sigma^{2}+\cdots+\frac{1}{n^{2}} \sigma^{2}+2 \sum_{i>j}\left(\frac{1}{n}\right)\left(\frac{1}{n}\right) \operatorname{Cov}\left(Y_{i}, Y_{j}\right) \\
& \quad \begin{array}{l}
\text { Because they are } \\
\\
\\
\quad \frac{\text { independent }}{\operatorname{Cov}\left(Y_{i}, Y_{j}\right)}=0 . \\
= \\
\frac{\sigma^{2}}{n}
\end{array}
\end{aligned}
$$

