XXIX. Covariance, Correlation, and Linear Functions

Definition and Formulas for Covariance

• **Definition**: The <u>covariance</u> of two random variables Y_1 and Y_2 is

 $Cov(Y_1, Y_2) := E[(Y_1 - \mu_1)(Y_2 - \mu_2)],$

where μ_1 and μ_2 are the means of Y_1 and Y_2 , respectively.

• Useful formulas to calculate covariance:

 $Cov (Y_1, Y_2) = E (Y_1 Y_2) - E (Y_1) E (Y_2)$ $Cov (Y_1, Y_1) = V (Y_1)$ $Cov (cY_1, cY_2) = c^2 Cov (Y_1, Y_2)$

Intuition for Covariance

- Covariance is a measure of dependence.
- Dependence doesn't necessarily mean that the variables do the same thing; it means that knowing the value of one gives you more information about the other.
- If Y_1 moves with Y_2 , then Cov is positive.
- If Y_1 moves consistently against Y_2 , then Cov is negative.

Either one indicates dependence! It's like a child who always does the opposite of what you say: You can still control him by reverse psychology, so he is still dependent on you.

Independence Theorem

- **Theorem:** If Y_1 and Y_2 are independent, then $\text{Cov}(Y_1, Y_2) = 0$.
- The converse is not true:
- It is possible to have $Cov(Y_1, Y_2) = 0$ with Y_1 and Y_2 dependent.

See Example II for a counterexample.

Correlation Coefficient

- Let Y_1 and Y_2 be random variables with standard deviations σ_1 and σ_2 .
- Define the correlation coefficient ρ :

$$\rho := \frac{\operatorname{Cov}\left(Y_1, Y_2\right)}{\sigma_1 \sigma_2}$$

- Then $\rho(cY_1, cY_2) = \rho(Y_1, Y_2)$. So ρ is scale-independent.
- We always have $-1 \le \rho \le 1$.

Linear Functions of Random Variables

- Suppose Y_1, \ldots, Y_n are random variables with means μ_1, \ldots, μ_n , variances $\sigma_1^2, \ldots, \sigma_n^2$.
- 1. The expected value $E(a_1Y_1 + \cdots + a_nY_n)$ is

$$a_1\mu_1+\cdots+a_n\mu_n.$$

2. The variance $V(a_1Y_1 + \cdots + a_nY_n)$ is

$$a_1^2\sigma_1^2 + \dots + a_n^2\sigma_n^2 + 2\sum_{i>j}a_ia_j\operatorname{Cov}\left(Y_i,Y_j\right).$$

Linear Functions of Random Variables

- Suppose Y_1, \ldots, Y_n and X_1, \ldots, X_m are random variables.
- 3. The covariance of $a_1Y_1 + \cdots + a_nY_n$ and $b_1X_1 + \cdots + b_mX_m$ is

$$\operatorname{Cov}\left(\sum a_i Y_i, \sum b_j X_j\right) = \sum_{i,j} a_i b_j \operatorname{Cov}\left(Y_i, X_j\right).$$

Example I

Let $f(y_1, y_2) :\equiv 1$ over the triangle with corners at (-1, 0), (0, 1), and (1, 0). Calculate $E(Y_1), E(Y_2)$ and $E(Y_1Y_2)$.

(Graph.)

$$\begin{split} \mu_1 &:= E\left(Y_1\right) \\ &:= \int_{y_2=0}^{y_2=1} \int_{y_1=y_2-1}^{y_1=1-y_2} y_1 \cdot 1 \, dy_1 \, dy_2 \\ &= \cdots \\ &= 0 \quad (\text{We should have known this from symmetry.}) \\ \mu_2 &:= E\left(Y_2\right) \\ &:= \int_{y_2=0}^{y_2=1} \int_{y_1=y_2-1}^{y_1=1-y_2} y_2 \cdot 1 \, dy_1 \, dy_2 \\ &= \cdots \\ &= \frac{1}{3} \quad \text{Engineers might recognize it as the moment of a triangle.} \\ E\left(Y_1Y_2\right) &:= \int_{y_2=0}^{y_2=1} \int_{y_1=y_2-1}^{y_1=1-y_2} y_1y_2 \cdot 1 \, dy_1 \, dy_2 \\ &= \cdots \\ &= 0 \quad \text{Still not surprising from symmetry.} \end{split}$$

Example II

As in Example I, let $f(y_1, y_2) :\equiv 1$ over the triangle with corners at (-1, 0), (0, 1), (1, 0). Compute Cov (Y_1, Y_2) . Are Y_1 and Y_2 independent?

(Graph.) $\operatorname{Cov}(Y_1, Y_2) = E(Y_1Y_2) - E(Y_1) E(Y_2) = 0 \cdot \frac{1}{3} - 0 = \boxed{0}$. But we know Y_1 and Y_2 are <u>not</u> independent, because the region is not rectangular. (For example, if you know $Y_1 = \frac{3}{4}$, then you know Y_2 cannot be $\frac{1}{2}$. [Graph.]) So our theorem above is not iff.

Example III

Let Y_1 and Y_2 be independent variables with means and variances $\mu_1 = 7$, $\mu_2 = 5$, $\sigma_1^2 = 4$, $\sigma_2^2 = 9$. Let $U_1 := Y_1 + 2Y_2$ and $U_2 := Y_1 - Y_2$. Calculate $V(U_1)$ and $V(U_2)$.

 $V(U_1) = 4 + 2^2 9 + 2 \cdot 1 \cdot 2 \operatorname{Cov} (Y_1, Y_1) = 40 + 0 = 40$ by independence. $V(U_2) = 4 + (-1)^2 9 + 2 \cdot 1 \cdot 2 \operatorname{Cov} (Y_1, Y_1) = 13 + 0 = 13$ by independence.

Example IV

As in Example III, let Y_1 and Y_2 be independent variables with means and variances $\mu_1 = 7$, $\mu_2 = 5$, $\sigma_1^2 = 4$, $\sigma_2^2 = 9$. Let $U_1 := Y_1 + 2Y_2$ and $U_2 := Y_1 - Y_2$. Calculate Cov (U_1, U_2) and $\rho(U_1, U_2)$.

(a)

$$Cov (U_1, U_2) = Cov (Y_1, Y_1) - Cov (Y_1, Y_2) + 2 Cov (Y_2, Y_1) - 2 Cov (Y_2, Y_2) = V (Y_1) - 0 + 2 \cdot 0 - 2V (Y_2) = 4 - 2 \cdot 9 = -14$$
(b) $\rho (U_1, U_2) = \frac{-14}{\sqrt{40}\sqrt{13}} = \frac{-14}{\sqrt{40}\sqrt{13}}$

Note that $-1 \leq \rho \leq 1$.

Example V

Suppose Y_i are independent variables with mean μ and variance σ^2 . Find the mean and variance of the average $\overline{Y} := \frac{1}{n}Y_1 + \cdots + \frac{1}{n}Y_n$.

(a)
$$E\left(\overline{Y}\right) = \frac{1}{n}\mu + \dots + \frac{1}{n}\mu = \mu$$
. No surprise.
(b)

$$V\left(\overline{Y}\right) = a_1^2 V\left(Y_1\right) + \dots + a_n^2 V\left(Y_n\right) + 2\sum_{i>j} a_i a_j \operatorname{Cov}\left(Y_i, Y_j\right)$$
$$= \frac{1}{n^2} \sigma^2 + \dots + \frac{1}{n^2} \sigma^2 + 2\sum_{i>j} \left(\frac{1}{n}\right) \left(\frac{1}{n}\right) \operatorname{Cov}\left(Y_i, Y_j\right)$$
$$\overset{\text{Because they are }}{\underset{\operatorname{Cov}\left(Y_i, Y_j\right) = 0.}{\underset{=}{\overset{\left[\frac{\sigma^2}{n}\right]}{\overset{=}{n}}}}$$