XXVII. Independent Random Variables

Intuition

- We have an experiment with two random variables, Y_{1} and Y_{2}.
- Y_{1} and Y_{2} are independent if knowing the value of Y_{2} gives you no new information about the distribution of Y_{1}.
- This leads to the formula

$$
f_{1}\left(y_{1}\right)=f\left(y_{1} \mid y_{2}\right) .
$$

Definition and Formulas

- Definition: Random variables Y_{1} and Y_{2} are independent if for all y_{1}, y_{2},
$P\left(Y_{1}=y_{1}, Y_{2}=y_{2}\right)=P\left(Y_{1}=y_{1}\right) P\left(Y_{2}=y_{2}\right)$.
- Short version:

$$
\begin{array}{ll}
p\left(y_{1}, y_{2}\right)=p_{1}\left(y_{1}\right) p_{2}\left(y_{2}\right) & \text { (discrete) } \\
f\left(y_{1}, y_{2}\right)=f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) & \text { (continuous) }
\end{array}
$$

Note: Since $f\left(y_{1}, y_{2}\right)=f_{2}\left(y_{2}\right) f\left(y_{1} \mid y_{2}\right)$, we could plug this in and cancel $f_{2}\left(y_{2}\right)$ to get $f_{1}\left(y_{1}\right)=$ $f\left(y_{1} \mid y_{2}\right)$, the formula from the previous slide.

- Theorem: For continuous random variables, Y_{1} and Y_{2} are independent if and only if

1. the domain where $f\left(y_{1}, y_{2}\right)$ is nonzero is a rectangle (possibly infinite), and
2. $f\left(y_{1}, y_{2}\right)$ can be factored into

$$
\text { (function of } y_{1} \text {)(function of } y_{2} \text {). }
$$

Example I

Let $f\left(y_{1}, y_{2}\right):=6\left(1-y_{2}\right), 0 \leq y_{1} \leq y_{2} \leq 1$. Use the definition to determine if Y_{1} and Y_{2} are independent.
(Graph.)

$$
\begin{aligned}
& f_{1}\left(y_{1}\right)=\int_{y_{2}=y_{1}}^{y_{2}=1} 6\left(1-y_{2}\right) d y_{2}=3 y_{1}^{2}-6 y_{1}+3 \\
& f_{2}\left(y_{2}\right)=\int_{y_{1}=0}^{y_{1}=y_{2}} 6\left(1-y_{2}\right) d y_{1}=6 y_{2}-6 y_{2}^{2}
\end{aligned}
$$

We don't have $f\left(y_{1}, y_{2}\right)=f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)$, so they're not independent.
This is also clear from the theorem, because the domain is not a rectangle.

Example II

Let $f\left(y_{1}, y_{2}\right):=y_{1}+y_{2}, 0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1$. Use the definition to determine if Y_{1} and Y_{2} are independent.

$$
\begin{aligned}
f_{2}\left(y_{2}\right) & :=\int_{y_{1}=0}^{y_{1}=1}\left(y_{1}+y_{2}\right) d y_{1} \\
& =\left.\left(\frac{y_{1}^{2}}{2}+y_{1} y_{2}\right)\right|_{y_{1}=0} ^{y_{1}=1} \\
& =y_{2}+\frac{1}{2} \\
f_{1}\left(y_{1}\right) & =y_{1}+\frac{1}{2} \\
f\left(y_{1} \mid y_{2}\right) & :=\frac{f\left(y_{1}, y_{2}\right)}{f_{2}\left(y_{2}\right)} \\
& =\frac{y_{1}+y_{2}}{y_{2}+\frac{1}{2}}
\end{aligned}
$$

$f\left(y_{1}, y_{2}\right) \neq f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right)\left(\right.$ or $\left.f_{1}\left(y_{1}\right) \neq f\left(y_{1} \mid y_{2}\right)\right)$, so they're not independent.
Check: This is a rectangle, but it can't be factored, so they're not independent.

Example III

Roll two dice, a red die and a blue die. Define the variables:

$$
\begin{aligned}
& Y_{1}:=\text { what shows on red die } \\
& Y_{2}:=\text { total }
\end{aligned}
$$

Are Y_{1} and Y_{2} independent?

Intuitively, no, because if you get a 6 on the red die, then you're more likely to have a high total. We'll check:

$$
P\left(Y_{1}=y_{1} \cap Y_{2}=y_{2}\right)=P\left(Y_{1}=y_{1}\right) P\left(Y_{2}=y_{2}\right) .
$$

Take $y_{1}:=6, y_{2}:=12$. Then

$$
\begin{aligned}
P\left(Y_{1}=y_{1} \cap Y_{2}=y_{2}\right) & =\frac{1}{36} \\
P\left(Y_{1}=y_{1}\right) & =\frac{1}{6} \\
P\left(Y_{2}=y_{2}\right) & =\frac{1}{36} \\
P\left(Y_{1}=y_{1} \cap Y_{2}=y_{2}\right) & \neq P\left(Y_{1}=y_{1}\right) P\left(Y_{2}=y_{2}\right)
\end{aligned}
$$

So they're not independent.

Example IV

Consider the joint density function:

$$
f\left(y_{1}, y_{2}\right):=e^{-\left(y_{1}+y_{2}\right)}, 0 \leq y_{1}<\infty, 0 \leq y_{2}<\infty
$$

Are Y_{1} and Y_{2} independent?

$$
\begin{aligned}
f_{1}\left(y_{1}\right) & :=\int_{y_{2}=0}^{y_{2}=\infty} e^{-\left(y_{1}+y_{2}\right)} d y_{2} \\
& =e^{-y_{1}} \int_{y_{2}=0}^{y_{2}=\infty} e^{-y_{2}} d y_{2} \\
& =\left.e^{-y_{1}}\left(-e^{-y_{2}}\right)\right|_{y_{2}=0} ^{y_{2}=\infty} \\
& =e^{-y_{1}} \\
f_{2}\left(y_{2}\right) & =e^{-y_{2}} \\
f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) & =e^{-\left(y_{1}+y_{2}\right)}=f\left(y_{1}, y_{2}\right) \sqrt{ }
\end{aligned}
$$

So they are independent.
Alternately, we could use the theorem: The region is a rectangle, and $f\left(y_{1}, y_{2}\right):=e^{-\left(y_{1}+y_{2}\right)}$ factors into
(function of y_{1} only)(function of y_{2} only).

Example V

Let $f\left(y_{1}, y_{2}\right):=4 y_{1} y_{2}, 0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1$. Are Y_{1} and Y_{2} independent?

$$
\begin{aligned}
f_{1}\left(y_{1}\right) & :=\int_{y_{2}=0}^{y_{2}=\infty} 4 y_{1} y_{2} d y_{2} \\
& =\left.e^{-y_{1}} 2 y_{1} y 2^{2}\right|_{y_{2}=0} ^{y_{2}=\infty}=2 y_{1} \\
f_{2}\left(y_{2}\right) & =2 y_{2} \\
f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) & =4 y_{1} y_{2}=f\left(y_{1}, y_{2}\right) \sqrt{ }
\end{aligned}
$$

So they are independent.
Alternately, we could use the theorem: The region is a rectangle, and $f\left(y_{1}, y_{2}\right):=4 y_{1} y_{2}$ factors into
(function of y_{1} only)(function of y_{2} only).

