XXII. Beta Distribution

Beta Function

- Fixed parameters: $\alpha>0, \beta>0$
- We define the beta function
$B(\alpha, \beta):=\int_{0}^{1} y^{\alpha-1}(1-y)^{\beta-1} d y=$ some constant
- Relationship between the gamma and beta functions:

$$
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

- This makes it easy to compute for whole numbers, since $\Gamma(n)=(n-1)$!.
(Plug in values for α and β, and it spits out a number.)

Don't mix up the beta function and the beta distribution!

Beta Distribution

- We want to define a distribution on $[0,1]$ using the function

$$
y^{\alpha-1}(1-y)^{\beta-1}
$$

Will Murray's Probability, XXII. Beta Distribution 2

- Recall that a probability density function must satisfy $\int_{0}^{1} f(y) d y=1$. To make this work, we divide by $B(\alpha, \beta)$:
- Density function for the beta distribution:

$$
f(y):=\frac{y^{\alpha-1}(1-y)^{\beta-1}}{B(\alpha, \beta)}, 0 \leq y \leq 1
$$

Don't mix up the beta function and the beta distribution!

Key Properties of the Beta Distribution

- Mean:

$$
\mu=E(Y)=\frac{\alpha}{\alpha+\beta}
$$

- Variance:

$$
\sigma^{2}=V(Y)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}
$$

- Standard deviation:

$$
\sigma=\sqrt{V(Y)}=\sqrt{\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}}
$$

Example I

Calculate $B(3,4)$.

$$
\begin{aligned}
B(\alpha, \beta) & =\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} \\
B(3,4) & =\frac{\Gamma(3) \Gamma(4)}{\Gamma(7)} \\
& =\frac{2!\cdot 3!}{6!} \\
& =\frac{2 \cdot 6}{720} \\
& =\frac{1}{60}
\end{aligned}
$$

Example II

On the same set of axes, graph the density functions for the beta distribution for the following combinations of (α, β) :

$$
\left(\frac{1}{2}, 2\right) \quad(1,4) \quad(10,2) \quad(1.1,2)
$$

$$
f(y):=\frac{y^{\alpha-1}(1-y)^{\beta-1}}{B(\alpha, \beta)}
$$

Look at $y=0$ and recall the behavior of the gamma density function near $y=0$.

- If $\alpha>1$, it goes to 0 .
- If $\alpha=1$, it goes to 1 . (Actually it scales to some other finite nonzero number.)
- If $\alpha<1$, it goes to ∞.

So α controls the behavior at $y=0$.
Similarly, β controls what it does at $y=1$.

- Red: $\alpha=\frac{1}{2}($ goes to $\infty), \beta=2($ goes to 0$)$.
- Green: $\alpha=1$ (finite limit), $\beta=4$ (pulls down to 0). [I took a bigger β to make it not so linear.]
- Black: $\alpha=10$ (pulls it down strongly), $\beta=$ 2 (must get the area somewhere).
- Blue: $\alpha=1.1$ (like $\alpha=1$, but with a dropoff right at 0), $\beta=2$ (line $1-y$).

Example III

Show that the uniform distribution is a special case of the beta distribution.

Take $\alpha:=1, \beta:=1$.

$$
\begin{aligned}
B(\alpha, \beta) & =\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} \\
B(1,1) & =\frac{\Gamma(1) \Gamma(1)}{\Gamma(2)}=1 \\
f(y) & :=\frac{y^{\alpha-1}(1-y)^{\beta-1}}{B(\alpha, \beta)} \equiv 1,0 \leq y \leq 1
\end{aligned}
$$

Example IV

Show that the distribution with triangular density function $f(y):=2 y, 0 \leq y \leq 1$ is a special case of the beta distribution.

Take $\alpha:=2, \beta:=1$.

$$
\begin{aligned}
B(\alpha, \beta) & =\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} \\
B(1,1) & =\frac{\Gamma(2) \Gamma(1)}{\Gamma(3)}=\frac{1}{2} \\
f(y) & :=\frac{y^{\alpha-1}(1-y)^{\beta-1}}{B(\alpha, \beta)}=2 y, 0 \leq y \leq 1
\end{aligned}
$$

Example V

The length of your morning commute (in hours) is a random variable Y that has a beta distribution with $\alpha=\beta=2$.
A. Find the chance that your commute tomorrow will take longer than 30 minutes.
B. Your rage level is $R:=Y^{2}+2 Y+1$. Find the expected value of R.

$$
\begin{aligned}
f(y) & :=\frac{y^{\alpha-1}(1-y)^{\beta-1}}{B(\alpha, \beta)} \\
& =\frac{\Gamma(4)}{\Gamma(2) \Gamma(2)} y(1-y) \\
& =6\left(y-y^{2}\right)
\end{aligned}
$$

Example V

$$
f(y)=6\left(y-y^{2}\right)
$$

Will Murray's Probability, XXII. Beta Distribution 7
A.

$$
\begin{aligned}
P\left(Y \geq \frac{1}{2}\right) & =\int_{\frac{1}{2}}^{1} 6\left(y-y^{2}\right) d y \\
& =\left.6\left(\frac{y^{2}}{2}-\frac{y^{3}}{3}\right)\right|_{y=\frac{1}{2}} ^{y=1} \\
& =6\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{8}+\frac{1}{24}\right) \\
& =3-2-\frac{3}{4}+\frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

B.

$$
\begin{aligned}
E(Y) & =\frac{\alpha}{\alpha+\beta}=\frac{1}{2} \\
E\left(Y^{2}\right) & =V(Y)+E(Y)^{2} \\
& =\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}+\left(\frac{\alpha}{\alpha+\beta}\right)^{2} \\
& =\frac{4}{16 \cdot 5}+\frac{1}{4}=\frac{3}{10} \\
E(R) & =\frac{3}{10}+2 \cdot \frac{1}{2}+1=\frac{23}{10}
\end{aligned}
$$

