XX. Normal (Gaussian) Distribution

Normal (Gaussian) Distribution

- The <u>normal distribution</u> (also known as the <u>Gaussian distribution</u>) is the most common continuous distribution. It is the famous "bell curve".
- Fixed parameters:

Formula for the Normal Distribution

• Density function:

$$f(y) := \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, -\infty < y < \infty$$

• $P(a \le Y \le b) = \int_{a}^{b} f(y) \, dy$, but this can't be integrated in general.

Standard Normal Distribution

- The standard normal distribution has mean $\mu = 0$ and standard deviation $\sigma = 1$.
- We use $Z \sim N(0, 1)$ to indicate that Z has the standard normal distribution.

Will Murray's Probability, XX. Normal (Gaussian) Distribution 2

• We can find probabilities for a standard normal variable Z using charts, calculators, computer algebra systems, or online applications.

Standard Normal Distribution

	Second decimal place of z													
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09				
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.464				
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.424				
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859				
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483				
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.312				
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2770				
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.245				
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148				
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.186				
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.161				
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.137				
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170				
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.098				
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823				
14	.0808	.0793	.0778	.0764	.0749	.0735	.0722	.0708	.0694	.068				

Nonstandard Normal Distribution

• When you have a <u>nonstandard</u> normal variable $Y \sim N(\mu, \sigma^2)$, then you can form the associated standard normal:

$$Z := \frac{Y - \mu}{\sigma} \sim N(0, 1)$$

Will Murray's Probability, XX. Normal (Gaussian) Distribution 3

• Convert your range for Y into a range for Z:

$$P(a \le Y \le b) = P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right)$$

• Then you can look up probabilities for Z.

Example I

What is the chance that a standard normal variable will land between 1 and 2?

	Second decimal place of z											
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09		
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641		
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247		
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859		
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483		
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121		
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776		
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451		
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148		
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867		
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611		
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379		
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170		
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985		
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823		
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0722	.0708	.0694	.068		
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559		
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.045		
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.036		
1.8	.0359	.0352	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294		
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233		
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183		

$$P(1 \le Z \le 2) = P(Z \ge 1) - P(Z \ge 2)$$

$$\approx 0.1587 - 0.0228$$

$$= 0.1359$$

Example II

If a set of data is normally distributed, then what proportion of the data lies within two standard deviations of the mean?

z	Second decimal place of z											
	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09		
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641		
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247		
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859		
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483		
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.312		
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776		
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.245		
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148		
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.186		
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.161		
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379		
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170		
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.098		
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.082		
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0722	.0708	.0694	.068		
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.055		
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.045		
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.036		
1.8	.0359	.0352	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.029		
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.023		
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.018		

Will Murray's Probability, XX. Normal (Gaussian) Distribution 5

 $1 - 2(0.0228) \approx 95.44\%$ of the data lies within two standard deviations of the mean.)

Example III

Scores on an exam are normally distributed with a mean of 76 and variance of 64.

- A. What proportion of scores are between 72 and 96?
- B. The minimum passing score is 60. Find the proportion of students that will pass.

A.
$$Z := \frac{Y - 76}{8}$$
 is a standard normal variable.
 $P(72 \le Y \le 96) = P(-4 \le Y - 76 \le 20)$
 $= P\left(-0.5 \le \frac{Y - 76}{8} \le 2.5\right)$
 $\approx (0.5 - 0.3085) + (0.5 - .0062)$ from the standard normal
 $= 68.53\%$

В.

$$P(Y > 60) = P(Y - 76 \le -16)$$

= $P\left(\frac{Y - 76}{8} \le -2.0\right)$
 $\approx 1 - 0.0228$ from the standard normal
table
= 97.72%

Example IV

Daytime high temperatures in Long Beach are normally distributed with a mean of 75 and a standard deviation of 9. What percentage of days have high temperatures over 88?

 $\mu=75, \sigma=9.$ We want $P(Y\geq 88).$ $Z:=\frac{Y-75}{9}$ is standard normal:

$$z(88) = \frac{88 - 75}{9}$$
$$= \frac{13}{9}$$
$$\approx 1.44$$

Will Murray's Probability, XX. Normal (Gaussian) Distribution 7

	Second decimal place of z											
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09		
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641		
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247		
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859		
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483		
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121		
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776		
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451		
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148		
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867		
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611		
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379		
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170		
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985		
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823		
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0722	.0708	.0694	.0681		
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559		
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455		
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367		
1.8	.0359	.0352	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294		
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233		
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183		

Chart: $P(Z \ge 1.44) \approx 0.0749$

So the probability is $\approx 0.0749 = 7.49\%$.

Example V

Scores on an exam are normally distributed with a mean of 70 and variance of 16.

- A. What percentage of the scores are between 68 and 78?
- B. What is the minimum score to be in the top 10% of students?

Let $Z := \frac{Y - 70}{4}$, a standard normal variable.

- A. 68 < Y < 78 iff $-\frac{1}{2} < Z < 2$, which occurs with probability $\approx 1 - 0.3085 - 0.0228 \approx 67\%$.
- B. The 10% cutoff is at Z > 1.28, which translates into $\approx Y > \boxed{75}$.