II. Combining events: Multiplication and addition

Unions of events

- $A \cup B$ is the set of outcomes in A or B, meaning at least one of A or B is true.
- This is the inclusive OR: It means one or the other or both. (The exclusive OR, meaning one or the other but not both, is not as common.)

Think of soup or salad at a restaurant. This isn't that.

Draw a Venn diagram with S, A, and B.

- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- If A and B are disjoint events (no overlap), then $P(A \cap B)=0$, so we get

$$
P(A \cup B)=P(A)+P(B)
$$

Draw a Venn diagram with S, A, and B.

Will Murray's Probability, II. Combining events: Multiplication and addition 2

- $A \cap B$ is the set of outcomes in A and B, meaning both of A and B are true.

Draw a Venn diagram with S, A, and B.

- To find $P(A \cap B)$, the multiplication rule is often useful:
- If you have m possible outcomes for one experiment and n possible outcomes for a second, independent experiment, then there are $m n$ possible combined outcomes.

Conditional probability

- The conditional probability $P(A \mid B)$ (" $P(A$ given $B)$ ") is the probability of event A, given that event B is true.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Draw a Venn diagram with S, A, and B.

Independence

- Events A and B are independent if knowing that B is true would not change the probability that A is true:

$$
P(A)=P(A \mid B)
$$

Will Murray's Probability, II. Combining events: Multiplication and addition 3

- Warning: Independent does not mean disjoint. (Disjoint means that $P(A \cap \overline{B)}=0$.
- If A and B are independent, then $P(A)=\frac{P(A \cap B)}{P(B)}$, so we get

$$
P(A \cap B)=P(A) P(B) \text {. }
$$

Example I

Choose a whole number at random from 1 to 100 . What is the probability that it will be even or greater than 80 ?

By counting:

$$
\begin{aligned}
S & :=\{\text { all numbers }\} \\
A & :=\{\text { even numbers }\} \\
B & :=\{\text { numbers }>80\} \\
|A| & =50 \\
|B| & =20 \\
|A \cap B| & =10 \\
|A \cup B| & =|A|+|B|-|A \cap B|=50+20-10=60 \\
P(A \cup B) & =\frac{|A \cup B|}{|S|}=\frac{60}{100}=\frac{3}{5}
\end{aligned}
$$

By probability:

$$
\begin{aligned}
P(A) & =\frac{50}{100}=\frac{1}{2} \\
P(B) & =\frac{20}{100}=\frac{1}{5} \\
P(A \cap B) & =\frac{10}{100}=\frac{1}{10} \\
P(A \cup B) & =P(A)+P(B)-P(A \cap B)=\frac{1}{2}+\frac{1}{5}-\frac{1}{10}=\frac{5+2-1}{10}=\frac{3}{5}
\end{aligned}
$$

Example II

A combination deal at a restaurant includes a main dish, drink, and dessert. If the restaurant serves four types of drinks, 12 main dishes, and three desserts, then how many different combination meals are possible?
$4 \cdot 12 \cdot 3=144$

Example III

We roll two dice, a red one and a blue one. What is the probability that the red one shows a 4 and the blue one is odd?

By counting:

$$
P(A \cap B)=\frac{|A \cap B|}{|S|}=\frac{|\{41,43,45\}|}{36}=\frac{1}{12}
$$

By probability:
These are independent, since knowing that one is true would not change the the probability that the other is true.

$$
P(A \cap B)=\left(\frac{1}{6}\right)\left(\frac{1}{2}\right)=\frac{1}{12}
$$

Example IV

Flip a coin four times. What is the probability that there will be at least three heads, given that the first two flips are heads?

$$
\begin{aligned}
S & :=\{\text { all } 16 \text { outcomes }\} \\
A & :=\{\text { at least three heads: HHHT, HHTH, HTHH, THHH, HHHH }\} \\
B & :=\{\text { first two are heads: HHHH, HHHT, HHTH, HHTT }\} \\
A \cap B & =\{H H H T, \text { HHTH,HHHH\}} \\
P(A \mid B) & =\frac{P(A \cap B)}{P(B)}=\frac{\frac{3}{16}}{\frac{4}{16}}=\frac{3}{4}
\end{aligned}
$$

Will Murray's Probability, II. Combining events: Multiplication and addition 6

Example V

Roll two dice (red and blue). Define the events:
$A=$ red die is 3
$B=$ total is 7
$C=$ total is 8
Calculate the conditional probabilities:

$$
\begin{aligned}
& P(B \mid A) \\
& P(A \mid B) \\
& P(C \mid A) \\
& P(A \mid C) \\
& P(C \mid B) \\
& P(B \mid C)
\end{aligned}
$$

$$
\begin{array}{ll}
A=\text { red die is } 3 . & P(A)=\frac{6}{36}=\frac{1}{6} . \\
B=\text { total is } 7 . & P(B)=\frac{6}{36}=\frac{1}{6} . \\
C=\text { total is } 8 . & P(C)=\frac{5}{36} .
\end{array}
$$

$$
\begin{aligned}
& P(B \mid A)=\begin{array}{|c|}
\frac{1}{6} \\
P(A \mid B)
\end{array}=\begin{array}{|c}
\frac{1}{6} \\
P(C \mid A)
\end{array} \\
& =\frac{1}{6} \\
& P(A \mid C) \\
& =\frac{1}{5} \\
& P(C \mid B)
\end{aligned} \quad \text { Different from } P(C \mid A)!
$$

Example VI

As above, roll two dice (red and blue). Define the events:

$$
\begin{aligned}
& A=\text { red die is } 3 \\
& B=\text { total is } 7 \\
& C=\text { total is } 8
\end{aligned}
$$

Are events A and B independent? A and $C ? B$ and C ?

By the formulas, A and B are [independent]. A and C are [dependent]. B and C are [dependent].

