Will Murray's Probability, XIX. Uniform Distribution 1

XIX. Uniform Distribution

Uniform Distribution

- The uniform distribution is a continuous distribution on a finite range $\left[\theta_{1}, \theta_{2}\right]$ in which the density is uniformly distributed:

$$
f(y) \equiv \frac{1}{\theta_{2}-\theta_{1}}, \theta_{1} \leq y \leq \theta_{2}
$$

- Each part of the region is equally probable:

$$
P(a \leq Y \leq b)=\frac{b-a}{\theta_{2}-\theta_{1}}
$$

Draw graph.

Key Properties of the Uniform Distribution

- Mean:

$$
\mu=E(Y)=\frac{\theta_{1}+\theta_{2}}{2}
$$

- Variance:

$$
\sigma^{2}=V(Y)=\frac{\left(\theta_{2}-\theta_{1}\right)^{2}}{12}
$$

- Standard deviation:

$$
\sigma=\sqrt{V(Y)}=\frac{\theta_{2}-\theta_{1}}{2 \sqrt{3}}
$$

The mean should be obvious. The variance is not.

Example I

Each day your newspaper arrives at a time that is uniformly distributed between 7 am and noon. Find the probability that it will arrive during an odd numbered hour.

$$
\frac{(8-7)+(10-9)+(12-11)}{5}=\frac{3}{5}
$$

Example II

If you pick a real number y from a uniform distribution on $[5,12]$, what is the probability that $y \geq 9$?

$$
\frac{12-9}{12-5}=\frac{3}{7}
$$

Example III

You arrange to meet a friend for dinner at 6 pm . Both of you are chronically tardy; your arrival time is uniformly distributed between 0 and 15 minutes late, and your friend's arrival is uniformly distributed between 0 and 10 minutes late. What
the probability that you will arrive before your friend?

Let

$$
\begin{aligned}
X & :=\text { your time } \\
Y & :=\text { your friend's time }
\end{aligned}
$$

Graph a rectangle $[0,15] \times[0,10]$.

$$
\begin{aligned}
P(X<Y) & =P(Y>X) \\
& =\frac{\text { area above } y=x}{\text { total area }} \\
& =\frac{50}{150}=\frac{1}{3}
\end{aligned}
$$

Example IV

Show that if Y is uniformly distributed on $[0,1]$, then the variable

$$
X:=\left(\theta_{2}-\theta_{1}\right) Y+\theta_{1}
$$

is uniformly distributed on $\left[\theta_{1}, \theta_{2}\right]$. (This is useful for computer programmers, who can use a random number generator on $[0,1]$ to simulate any uniform distribution on any range.)

$$
\begin{aligned}
Y=0 & \Longrightarrow X=\theta_{1} \\
Y=1 & \Longrightarrow X=\theta_{2} \\
P(a \leq X \leq b) & =P\left(a \leq\left(\theta_{2}-\theta_{1}\right) Y+\theta_{1} \leq b\right) \\
& =P\left(a-\theta_{1} \leq\left(\theta_{2}-\theta_{1}\right) Y \leq b-\theta_{1}\right) \\
& =P\left(\frac{a-\theta_{1}}{\theta_{2}-\theta_{1}} \leq Y \leq \frac{b-\theta_{1}}{\theta_{2}-\theta_{1}}\right) \\
& =\frac{b-\theta_{1}}{\theta_{2}-\theta_{1}}-\frac{a-\theta_{1}}{\theta_{2}-\theta_{1}} \\
& =\frac{b-a}{\theta_{2}-\theta_{1}}
\end{aligned}
$$

So X is a uniform distribution on $\left[\theta_{1}, \theta_{2}\right]$.

Example V

An ice cream machine dispenses between 206 and 230 milliliters of ice cream, uniformly distributed. Find the expected amount of ice cream in a serving and the standard deviation.

$$
\begin{aligned}
\mu=E(Y) & =\frac{\theta_{1}+\theta_{2}}{2}=\frac{206+230}{2}=218 \text { millileters } \\
\sigma & =\frac{\theta_{2}-\theta_{1}}{2 \sqrt{3}}=\frac{230-206}{2 \sqrt{3}}=\frac{24}{2 \sqrt{3}}=\frac{12}{\sqrt{3}}=4 \sqrt{3} \text { millileters }
\end{aligned}
$$

(That's about 7 ml .)

