XVI. Poisson Distribution

Poisson Distribution

- The Poisson distribution describes events that occur randomly and independently, such as calls coming in to a tech support center.
- $Y:=$ number of calls in an hour

Real examples: How many calls come in to tech support in one hour? Cars pass a checkpoint on a country road? Major earthquakes strike in the next 20 years? Soldiers in the Prussian army die from horse kicks?

Formula for the Poisson Distribution

- Fixed parameter:
$\lambda:=$ average number of calls per hour (doesn't have to be an integer)
- Probability distribution:

$$
p(y)=\frac{\lambda^{y}}{y!} e^{-\lambda}, 0 \leq y<\infty
$$

- Mean:

$$
\mu=E(Y)=\lambda
$$

- Variance:

$$
\sigma^{2}=V(Y)=\lambda
$$

- Standard deviation:

$$
\sigma=\sqrt{V(Y)}=\sqrt{\lambda}
$$

The mean should be obvious. The variance is not.

Example I

California averages 6 major forest fires per year. What is the chance that there will be exactly 4 fires this year? What is the chance that there will be at least 4 fires?

$$
\begin{aligned}
p(y) & =\frac{\lambda^{y}}{y!} e^{-\lambda} \\
p(4) & =\frac{6^{4}}{4!} e^{-6}=\frac{54}{e^{6}} \approx 0.13385 \approx 13.4 \% \\
P(Y \geq 4) & =1-p(0)-p(1)-p(2)-p(3) \\
& =1-e^{-6}\left(1+\lambda+\frac{\lambda^{2}}{2}+\frac{\lambda^{3}}{6}\right) \\
& =1-e^{-6}\left(1+6+\frac{6^{2}}{2}+\frac{6^{3}}{6}\right) \\
& =1-e^{-6}(7+18+36) \\
& =1-\frac{61}{e^{6}} \\
& \approx 84.9 \%
\end{aligned}
$$

Example II

A call center receives two calls per minute on average.
A. Use Markov's inequality to estimate the chance that fewer than 5 calls will come in in the next minute.
B. Find the exact chance that fewer than 5 calls will come in in the next minute.

Example II

$\lambda=2$
A. Markov, $P(Y<5)$.

Will Murray's Probability, XVI. Poisson Distribution 4

B. Exact, $P(Y<5)$.
A. Markov says

$$
\begin{aligned}
P(Y \geq a) & \leq \frac{E(Y)}{a} \\
P(Y \geq 5) & \leq \frac{2}{5}=40 \% \\
P(Y<5) & \geq 60 \%
\end{aligned}
$$

So there is at least a 60% chance that fewer than 5 calls will come in.
B.

$$
\begin{aligned}
p(y) & =\frac{\lambda^{y}}{y!} e^{-\lambda} \\
P(Y \leq 4) & =P(0)+P(1)+P(2)+P(3)+P(4) \\
& =e^{-2}\left(1+2+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\frac{2^{4}}{4!}\right) \\
& =e^{-2}\left(3+2+\frac{4}{3}+\frac{2}{3}\right) \\
& =\frac{7}{e^{2}} \approx 94.7 \%
\end{aligned}
$$

Example III

Use the definition of expected value to confirm that the mean of the Poisson distribution is λ.

$$
\begin{aligned}
E(Y) & :=\sum_{y=0}^{\infty} y p(y)=\sum y \frac{\lambda^{y}}{y!} e^{-\lambda}=? \\
\text { Let } \quad f(\lambda) & :=\sum \frac{\lambda^{y}}{y!}=e^{\lambda} .
\end{aligned}
$$

Take $\frac{d}{d \lambda}$: $\quad f^{\prime}(\lambda)=\sum y \frac{\lambda^{y-1}}{y!}=e^{\lambda}$
Multiply by $\lambda: \quad \lambda f^{\prime}(\lambda)=\sum y \frac{\lambda^{y}}{y!}=\lambda e^{\lambda}$
Multiply by $e^{-\lambda}: \quad \sum y \frac{\lambda^{y}}{y!} e^{-\lambda}=\lambda e^{\lambda} e^{-\lambda}$

$$
E(Y)=\lambda
$$

Example IV

Find $E\left(Y^{2}\right)$ for the Poisson distribution.

$$
\begin{aligned}
\sigma^{2} & =E\left(Y^{2}\right)-E(Y)^{2}=\lambda \\
E\left(Y^{2}\right)-E(Y)^{2} & =\lambda \\
E\left(Y^{2}\right)-\lambda^{2} & =\lambda \\
E\left(Y^{2}\right) & =\lambda^{2}+\lambda
\end{aligned}
$$

Example V

California averages two major earthquakes per decade. Let Y represent the number of major earthquakes in California in the next decade.

The cost of damage (in millions of dollars) is determined to be $C=2 Y^{2}+5 Y+10$.
A. Find the expected cost.
B. Find the probability that damages will cost more than $\$ 40$ million.

$$
\begin{aligned}
& \text { Example } \mathrm{V} \\
& \lambda=2, C=2 Y^{2}+5 Y+10
\end{aligned}
$$

A. Find the expected cost.
B. Find $P(C \geq 40)$.
A.

$$
\begin{aligned}
E(C) & =2 E\left(Y^{2}\right)+5 E(Y)+10 \\
& =2\left(\lambda^{2}+\lambda\right)+5 \lambda+10 \quad \text { From Example IV } \\
& =2 \lambda^{2}+7 \lambda+10=8+14+10=\$ 32 \text { million }
\end{aligned}
$$

B.

$$
\begin{aligned}
C & >40 \\
2 Y^{2}+5 Y+10 & >40 \\
2 Y^{2}+5 Y & >30
\end{aligned}
$$

Trial and error: $\quad Y \geq 3$

$$
\begin{aligned}
P(Y \geq 3) & =1-p(0)-p(1)-p(2) \\
& =1-e^{-2}\left(1+\lambda+\frac{\lambda^{2}}{2}+\frac{\lambda^{3}}{6}\right) \\
& =1-e^{-2}\left(1+2+\frac{2^{2}}{2}\right) \\
& =1-\frac{5}{e^{2}} \approx 32.3 \%
\end{aligned}
$$

