Will Murray's Probability, XV. Hypergeometric Distribution 1

XV. Hypergeometric Distribution

Hypergeometric Distribution

- The hypergeometric distribution describes choosing a committee of n men and women from a larger group of r women and $N-r$ men.
- This is an unordered choice, without replacement.
- What are the chances of getting exactly y women on our committee?
- $Y:=$ number of women on our committee

Formula for the Hypergeometric Distribution

- Fixed parameters:

$$
\begin{aligned}
N & :=\text { total number of people } \\
r & :=\text { number of women } \\
N-r & =\text { number of men } \\
n & :=\text { number on our committee }
\end{aligned}
$$

- Probability distribution:

$$
p(y)=\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}}, 0 \leq y \leq \min \{r, n\}
$$

Easy to remember.
If $r<n$, then we can only get up to r women.

Key Properties of the Hypergeometric Distribution

- Mean:

$$
\mu=E(Y)=\frac{n r}{N}
$$

- Variance:

$$
\sigma^{2}=V(Y)=\frac{n r}{N} \frac{N-r}{N} \frac{N-n}{N-1}
$$

- Standard deviation:

$$
\sigma=\sqrt{V(Y)}=\sqrt{\frac{n r}{N} \frac{N-r}{N} \frac{N-n}{N-1}}
$$

Careful: These are honest fractions, not binomial coefficients.

Example I

There are 33 students in a class, 12 women and 21 men. We pick a committee of 7 students at random. What is the chance that the committee will contain exactly 5 women?

$$
\begin{aligned}
p(y) & =\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}} \\
& =\frac{\binom{12}{5}\binom{21}{2}}{\binom{33}{7}}
\end{aligned}
$$

Example II

What is the expected number of women on the committee in Example I?

$$
\begin{aligned}
\mu=E(Y) & =\frac{n r}{N} \\
& =\frac{7 \cdot 12}{33}=\frac{28}{11} \text { women }
\end{aligned}
$$

Example III

Your shoe closet contains 10 pairs of shoes. Packing for a move, you begin throwing shoes into a box at random. The box fills up at 13 shoes. What is the probability that there are 5 left shoes and 8 right shoes in the box?

$$
\begin{aligned}
N & :=\text { total number of shoes }=20 \\
r & :=\text { number of left shoes }=10 \\
N-r & =\text { number of right shoes }=10 \\
n & :=\text { number in the box }=13 \\
p(y) & =\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}} \\
p(5) & =\frac{\binom{10}{5}\binom{10}{8}}{\binom{20}{13}}
\end{aligned}
$$

Example IV

What is the expected number of left shoes in the box in Example III?

$$
\begin{aligned}
\mu=E(Y) & =\frac{n r}{N} \\
& =\frac{13 \cdot 10}{20}=6.5 \text { left shoes }
\end{aligned}
$$

Example V

Use indicator variables and linearity of expectation to prove that the expected value of a hypergeometric random variable is $\mu=\frac{n r}{N}$.
$Y_{1}:=\#$ of women picked in the first choice $= \begin{cases}0 & \text { if we pick a man } \\ 1 & \text { if we pick a woman }\end{cases}$
$Y_{2}:=\#$ of women picked in the second
\vdots
$Y_{n}:=\#$ of women picked in the nth
$Y:=$ total number of women $=Y_{1}+\cdots+Y_{n}$
(Recall that expectation is linear even if the variables aren't independent, which they surely aren't here: If you get a woman the first time, that is, if $Y_{1}=1$, then it is less likely that $Y_{2}=1$.)

$$
\begin{aligned}
E\left(Y_{1}\right) & :=\sum_{y=0,1} y p(y) \\
& =0 \cdot P(\operatorname{man})+1 \cdot P(\text { woman })=\frac{r}{N} \\
E(Y) & =E\left(Y_{1}\right)+\cdots+E\left(Y_{n}\right) \\
& =\frac{r}{N}+\cdots+\frac{r}{N} \\
& =\frac{n r}{N}
\end{aligned}
$$

