XI. Tchebysheff's Inequality

Tchebysheff's Inequality

- Tchebysheff's inequality is a quick way of estimating probabilities based on the mean μ and standard deviation σ of a random variable.
- Suppose Y is a random variable, and k is constant.

Tchebysheff : $P(|Y-\mu|>k \sigma) \leq \frac{1}{k^{2}}$

- Intuition: It is unlikely that the variable will be far (many standard deviations away) from its mean.

Tchebysheff's Inequality in Reverse

- Suppose Y is a random variable, and k is constant.

Tchebysheff : $P(|Y-\mu|>k \sigma) \leq \frac{1}{k^{2}}$

- We can reverse it:

$$
P(|Y-\mu| \leq k \sigma) \geq 1-\frac{1}{k^{2}}
$$

- Intuition: It is likely that the variable will be close to (within a few standard deviations of) its mean.

Example I

Surveys show that students on a particular campus carry an average of $\$ 20$ in cash, with a standard deviation of $\$ 10$. If you meet a student at random, estimate the chance that she is carrying more than $\$ 100$. Also estimate the chance that she is carrying less than $\$ 80$.

Tchebysheff says

$$
\begin{aligned}
P(|Y-\mu|>k \sigma) & \leq \frac{1}{k^{2}} \\
P(|Y-20|>8 \cdot 10) & \leq \frac{1}{8^{2}}=\frac{1}{64} \\
P(|Y-\mu| \leq k \sigma) & \geq 1-\frac{1}{k^{2}} \\
P(|Y-20|<6 \cdot 10) & \geq 1-\frac{1}{6^{2}}=\frac{35}{36}
\end{aligned}
$$

Example II

Students on a college campus have completed an average of 50 units, with a standard deviation of 15 units. Estimate the chance that a randomly selected student has completed more than 95 units.

Will Murray's Probability, XI. Tchebysheff's Inequality 3

Tchebysheff says
$P(|Y-\mu|>k \sigma) \leq \frac{1}{k^{2}}$
$P(|Y-50|>45)=P(|Y-50|>3 \sigma) \leq \frac{1}{3^{2}}=\frac{1}{9}$

Example III

Scores on a national exam are symmetrically distributed around a mean of 76 with a variance of 64 . The minimum passing score is 60 . Use Tchebysheff's inequality to estimate the proportion of students that will pass.

$$
\begin{aligned}
P(|Y-\mu|>k \sigma) & \leq \frac{1}{k^{2}} \\
P(|Y-76|>8 k) & \leq \frac{1}{k^{2}} \\
k=2: \quad P(|Y-76|>16) & \leq \frac{1}{4} \\
P(Y<60)+(Y>92) & \leq \frac{1}{4} \\
\text { By symmetry }(Y<60) & \leq \frac{1}{8} \\
P(Y>60) & >\frac{7}{8}
\end{aligned}
$$

So at least 87.5% of the students will pass.

Example IV

Seismic data indicate that California suffers a major earthquake on average once every 10 years, with a standard deviation of 10 years. What can we say about the probability that there will be an earthquake in the next 30 years?
$\mu=\sigma=10$. Tchebysheff tells us that

$$
P(|Y-\mu| \geq 2 \sigma) \leq \frac{1}{4}
$$

so the probability that there will be one is $\geq \frac{3}{4}$.

Example V

Housing prices in Smalltown are symmetrically distributed with a mean of $\$ 50,000$ and a standard deviation of $\$ 20,000$. Use Tchebysheff's inequality to estimate the proportion of houses that cost less than $\$ 90,000$.

If I ever do this again, I should change the numbers so that it's not identical to Example III.

By Tchebysheff, at least 75% are between $\$ 10 \mathrm{~K}$ and $\$ 90 \mathrm{~K}$, so at least 37.5% are between $\$ 50 \mathrm{~K}$ and $\$ 90 \mathrm{~K}$. So $\geq 87.5 \%$ are below $\$ 90 \mathrm{~K}$.

