Will Murray's Differential Equations, IX. Inhomogeneous equations: undetermined coefficients1

IX. Inhomogeneous equations: undetermined coefficients

Lesson Overview

- To solve the (linear, second-order, inhomogeneous, constant coefficient) differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

first solve the homogeneous equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

by the methods of the previous lecture.

- Then find a particular solution to the inhomogenous equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

using undetermined coefficients. This means you guess something that looks like $g(t)$, but has generic coefficients. Then you plug it in and solve for the coefficients.

$g(t)$	Guess for y par
$k e^{r t}$	$A e^{r t}$
polynomial	$A t^{2}+B t+C$ $($ same degree as $g(t))$
$k \sin 5 t$	$A \sin 5 t+B \cos 5 t$
Combinations above.	Combinations above.

- If any term of your guess for $y_{\text {par }}$ looks like any term of $y_{\text {hom }}$, then multiply your whole guess by t.
- Solve for constants after finding y par.
- If $g(t)=\ln t, \tan t$, etc., then abandon undetermined coefficients. Use variation of parameters (next lecture).

Example I

Find the general solution to the differential equation:

$$
y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{3 t}
$$

$r=1,2 \Longrightarrow y_{\mathrm{hom}}=c_{1} e^{t}+c_{2} e^{2 t}$
Guess: $y_{\text {par }}=($ something that "looks like" $g(t))$ $=A e^{3 t}$. (A to be determined.) Plug in:

$$
\begin{aligned}
y_{\mathrm{par}}^{\prime} & =3 A e^{3 t} \\
y_{\mathrm{par}}^{\prime \prime} & =9 A e^{3 t} \\
9 A e^{3 t}-3\left(3 A e^{3 t}\right)+2\left(A e^{3 t}\right) & =4 A e^{3 t} \\
A & =2
\end{aligned}
$$

General Solution: $y_{\text {gen }}=c_{1} e^{t}+c_{2} e^{2 t}+2 e^{3 t}$.
Use IC to solve for constants after finding $y_{\text {par }}$.

Example II

Find the general solution to the differential equation:

$$
y^{\prime \prime}-3 y^{\prime}+2 y=4 t^{2}
$$

$r=1,2 \Longrightarrow y_{\mathrm{hom}}=c_{1} e^{t}+c_{2} e^{2 t}$
Guess: $y_{\text {par }}=($ something that "looks like" $g(t))$

Will Murray's Differential Equations, IX. Inhomogeneous equations: undetermined coefficients3

$$
\begin{aligned}
&=A t^{2}+B t+C \text {. Plug in: } \\
& \\
& y_{\text {par }}^{\prime}=A t^{2}+B t+C \\
& y_{\text {par }}^{\prime}=2 A t+B \\
& y_{\text {par }}^{\prime \prime}=2 A \\
& y^{\prime \prime}-3 y^{\prime}+2 y=2 A-6 A t-3 B+2 A t^{2}+2 B t+2 C=4 t^{2} \\
& \frac{t^{2}}{}: \quad \begin{array}{ll}
2 A & 2 A \\
\underline{t}: & 2 B-6 A=0 \\
\underline{\text { const }}: & 2 A-3 B+2 C=0 \\
y_{\text {par }} & \Longrightarrow A=2 \\
y_{\text {gen }} & =t^{2}+6 t+7 \\
c_{1} e^{t}+c_{2} e^{2 t}+2 t^{2}+6 t+7
\end{array}
\end{aligned}
$$

Example III

Find the general solution to the differential equation:

$$
y^{\prime \prime}-3 y^{\prime}+2 y=5 \cos 2 t
$$

$r=1,2 \Longrightarrow y_{\mathrm{hom}}=c_{1} e^{t}+c_{2} e^{2 t}$
Guess: $y_{\text {par }}=($ something that "looks like" $g(t))$

Will Murray's Differential Equations, IX. Inhomogeneous equations: undetermined coefficients4
$=A \cos 2 t+B \sin 2 t$. Plug in:

$$
\begin{aligned}
y_{\text {par }} & =A \cos 2 t+B \sin 2 t \\
y_{\text {par }}^{\prime \prime} & =-2 A \sin 2 t+2 B \cos 2 t \\
y_{\text {par }}^{\prime \prime} & =-4 A \cos 2 t-4 B \sin 2 t \\
y^{\prime \prime}-3 y^{\prime}+2 y & =-4 A \cos 2 t-4 B \sin 2 t-3(-2 A \sin 2 t+2 B \cos 2 t)+2(A \cos 2 t+B \sin 2 t) \\
& =(-2 A-6 B) \cos 2 t+(6 A-2 B) \sin 2 t=5 \cos 2 t \\
-2 A-6 B & =5 \\
6 A-2 B & =0 \Longrightarrow B=3 A \\
-2 A-6(3 A) & =5 \Longrightarrow-20 A=5 \Longrightarrow A=-\frac{1}{4} \Longrightarrow B=-\frac{3}{4} \\
y_{\text {par }} & =-\frac{1}{4} \cos 2 t-\frac{3}{4} \sin 2 t \\
y_{\text {gen }} & =c_{1} e^{t}+c_{2} e^{2 t}+-\frac{1}{4} \cos 2 t-\frac{3}{4} \sin 2 t
\end{aligned}
$$

Example IV

Find the general solution to the differential equation:

$$
\begin{array}{r}
y^{\prime \prime}-3 y^{\prime}+2 y=5 e^{t} \\
r=1,2 \Longrightarrow y_{\text {hom }}=c_{1} e^{t}+c_{2} e^{2 t}
\end{array}
$$

Guess: $y_{\text {par }}=A e^{t}$. This is doomed to fail, because this $y_{\text {par }}$ is a copy of $y_{\text {hom }}!$
Use $y_{\text {par }}=A t e^{t}$ instead.

$$
\begin{aligned}
y_{\text {par }}^{\prime} & =A t e^{t}+A e^{t} \\
y_{\text {par }}^{\prime \prime} & =A t e^{t}+A e^{t}+A e^{t} \\
& =A t e^{t}+2 A e^{t} \\
A t e^{t}+2 A e^{t}-3\left(A t e^{t}+A e^{t}\right)+2 A t e^{t} & =5 e^{t} \quad\{t \text { terms cancel. } \\
-A e^{t} & =5 e^{t} \\
A & =-5 \\
y_{\text {par }} & =-5 t e^{t} \\
y_{\text {gen }} & =c_{1} e^{t}+c_{2} e^{2 t}-5 t e^{t}
\end{aligned}
$$

Example V

Give an appropriate form for the particular solution to the differential equation:

$$
y^{\prime \prime}-3 y^{\prime}+2 y=t^{4}+7 e^{3 t}
$$

$r=1,2 \Longrightarrow y_{\mathrm{hom}}=c_{1} e^{t}+c_{2} e^{2 t}$
Strategy: Solve $L\left[y_{p_{1}}\right]=t^{4}$ by guessing $y_{p_{1}}:=$ $A t^{4}+B t^{3}+C t^{2}+D t+E$. Then solve $L\left[y_{p_{2}}\right]=7 e^{3 t}$ by guessing $y_{p_{1}}:=F e^{3 t}$. Then let $y_{p}:=y_{p_{1}}+y_{p_{2}}$, so $L\left[y_{p}\right]=t^{4}+e^{3 t}$.

