Will Murray's Differential Equations, VIII. Second order equations: repeated roots and reduction of

VIII. Second order equations: repeated roots and reduction of order

Lesson Overview

- To solve the (linear, second-order, homogeneous, constant coefficient) differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

first solve the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- If the characteristic equation has a double root r, then the general solution to the differential equation is

$$
y_{\text {gen }}=c_{1} e^{r t}+c_{2} t e^{r t} \text {. }
$$

- As before, to find c_{1} and c_{2}, use initial conditions, usually given as $y(0)$ and $y^{\prime}(0)$. You'll get two equations in two unknowns.
- The second solution was found by a method called reduction of order. If you have one solution $y_{1}(t)$ to a (second-order linear homogeneous) differential equation

$$
y^{\prime \prime}(t)+p_{1}(t) y^{\prime}(t)+p_{2}(t) y(t)=0
$$

then you can find a second solution $y_{2}(t)=v(t) y_{1}(t)$, where $v(t)=\int w(t) d t$ and $w(t)$ is a solution to the first-order equation

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p_{1} y_{1}\right) w=0 .
$$

Example I

Find the general solution to the differential equation:

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

$r=2,2 \Longrightarrow$
General Solution: $y_{\text {gen }}=c_{1} e^{2 t}+c_{2} t e^{2 t}$.

Example II

Solve the initial value problem:

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0, y(0)=3, y^{\prime}(0)=8
$$

General Solution from before:
$y_{\text {gen }}=\mathrm{c}_{1} e^{2 t}+c_{2} t e^{2 t} \Longrightarrow y(0)=c_{1}=3$
$y^{\prime}=2 c_{1} e^{2 t}-2 c_{1} t e^{2 t}+c_{2} e^{2 t} \Longrightarrow y^{\prime}(0)=2 c_{1}+c_{2}=8$
$2(3)+c_{2}=8 \Longrightarrow c_{2}=2$
$y=3 e^{2 t}+2 t e^{2 t}$

Example III

Consider the differential equation:

$$
t y^{\prime \prime}-2(t+1) y^{\prime}+4 y=0
$$

A. Check that $y_{1}=e^{2 t}$ is a solution to the equation.
B. Use reduction of order to find a second (independent) solution.

Will Murray's Differential Equations, VIII. Second order equations: repeated roots and reduction of
A.

$$
\begin{aligned}
y & =e^{2 t} \\
y^{\prime} & =2 e^{2 t} \\
y^{\prime \prime} & =4 e^{2 t} \\
t y^{\prime \prime}-2(t+1) y^{\prime}+4 y & =4 t e^{2 t}-2(t+1) 2 e^{2 t}+4 e^{2 t} \\
& =(4 t-4 t-4+4) e^{2 t}=0 \checkmark
\end{aligned}
$$

Example III

$$
t y^{\prime \prime}-2(t+1) y^{\prime}+4 y=0, y_{1}=e^{2 t}
$$

B. $y_{2}(t)=v(t) y_{1}(t)$, where $v(t)=\int w(t) d t$ and $w(t)$ is a solution to the first-order equation

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p_{1} y_{1}\right) w=0, p_{1}=\frac{-2(t+1)}{t} .
$$

$$
\begin{aligned}
e^{2 t} w^{\prime}+\left(4 e^{2 t}+\frac{-2(t+1)}{t} e^{2 t}\right) w & =0 \\
w^{\prime}+\left(4+\frac{-2(t+1)}{t}\right) w & =0 \\
w^{\prime}+\left(4-2-\frac{2}{t}\right) w & =0 \\
w^{\prime}+\left(2-\frac{2}{t}\right) w & =0 \\
w^{\prime} & =\left(\frac{2}{t}-2\right) w \\
\frac{d w}{d t} & =\left(\frac{2}{t}-2\right) w \\
\frac{d w}{w} & =\left(\frac{2}{t}-2\right) d t \\
\ln w & =2 \ln t-2 t \\
w & =e^{2 \ln t-2 t}=e^{2 \ln t} e^{-2 t}=t^{2} e^{-2 t} \\
v & =\int w(t) d t=-\frac{t^{2}}{2} e^{-2 t}-\frac{t}{2} e^{-2 t}-\frac{1}{4} e^{-2 t} \\
y_{2} & =e^{2 t} v \\
\text { Integrate by parts: } & =-\frac{t^{2}}{2}-\frac{t}{2}-\frac{1}{4}
\end{aligned}
$$

Since this is a linear homogeneous equation, we can multiply by a constant to simplify it. The best choice is -4 :

$$
y_{2}=2 t^{2}+2 t+1
$$

Example IV

Find the general solution to the differential equation:

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

$r=-1,-1 \Longrightarrow$

General Solution: $y_{\text {gen }}=c_{1} e^{-t}+c_{2} t e^{-t}$.

Example V

Consider the differential equation:

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0
$$

A. Check that $y_{1}=t$ is a solution to the equation.
B. Use reduction of order to find a second (independent) solution.
A.

$$
\begin{aligned}
y & =t \\
y^{\prime} & =1 \\
y^{\prime \prime} & =0 \\
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y & =0-t(t+2)(1)+(t+2)(t)=0 \checkmark
\end{aligned}
$$

Example V

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0, y_{1}=t
$$

B. $y_{2}(t)=v(t) y_{1}(t)$, where $v(t)=\int w(t) d t$ and $w(t)$ is a solution to the first-order equation
$y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p_{1} y_{1}\right) w=0, p_{1}=\frac{-t(t+2)}{t^{2}}=-\frac{t+2}{t}$.

Will Murray's Differential Equations, VIII. Second order equations: repeated roots and reduction of

$$
\begin{aligned}
t w^{\prime}+\left(2-\frac{t+2}{t} t\right) w & =0 \\
t w^{\prime}+[2-(t+2)] w & =0 \\
t w^{\prime}-t w & =0 \\
w^{\prime} & =w \\
\frac{d w}{d t} & =w \\
\frac{d w}{w} & =1 \\
\ln w & =t \\
w & =e^{t} \\
v & =\int w(t) d t=e^{t} \\
y_{2} & =t e^{t}
\end{aligned}
$$

