Will Murray's Differential Equations, VII. Second order equations, complex roots1

VII. Second order equations, complex roots

Lesson Overview

- To solve the (linear, second-order, homogeneous, constant coefficient) differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

first solve the characteristic equation:

$$
a r^{2}+b r+c=0
$$

Lesson Overview

- Sometimes the characteristic equation has complex roots $r_{1}=\alpha+\beta i, r_{2}=\alpha-\beta i$. (They always come in conjugate pairs if the original equation had real coefficients.) Then the general solution to the differential equation is

$$
y_{\text {gen }}=c_{1} e^{\alpha t} \cos \beta t+c_{2} e^{\alpha t} \sin \beta t .
$$

- As before, to find c_{1} and c_{2}, use initial conditions, usually given as $y(0)$ and $y^{\prime}(0)$. You'll get two equations in two unknowns.

Example I

Find the general solution to the differential equation:

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0
$$

Will Murray's Differential Equations, VII. Second order equations, complex roots2
$r=2 \pm 3 i \Longrightarrow$
General

Solution:

$y_{\text {gen }}=c_{1} e^{2 t} \cos 3 t+c_{2} e^{2 t} \sin 3 t$.

Example II

Solve the initial value problem:

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0, y(0)=2, y^{\prime}(0)=1
$$

General Solution from before:
$y_{\text {gen }}=c_{1} e^{2 t} \cos 3 t+c_{2} e^{2 t} \sin 3 t \Longrightarrow y(0)=c_{1}=2$
$y^{\prime}=2 c_{1} e^{2 t} \cos 3 t-3 c_{1} e^{2 t} \sin 3 t+2 c_{2} e^{2 t} \sin 3 t+$ $3 c_{2} e^{2 t} \cos 3 t \Longrightarrow y^{\prime}(0)=2 c_{1}+3 c_{2}=1$
$2(2)+3 c_{2}=1 \Longrightarrow c_{2}=-1$
$y=2 e^{2 t} \cos 3 t-e^{2 t} \sin 3 t$

Example III

Find the general solution of $y^{\prime \prime}-10 y^{\prime}+29 y=0$.
$r=5 \pm 2 i \Longrightarrow y_{\text {gen }}=c_{1} e^{5 t} \cos 2 t+c_{2} e^{5 t} \sin 2 t$

Example IV

Solve the initial value problem:

$$
y^{\prime \prime}+4 y=0, y(0)=5, y^{\prime}(0)=6
$$

Will Murray's Differential Equations, VII. Second order equations, complex roots3

Be careful not to write $r^{2}+4 r=0$.

$$
\begin{aligned}
r^{2}+4 & =0 \Longrightarrow r=0 \pm 2 i \\
y \text { gen } & =c_{1} \cos 2 t+c_{2} \sin 2 t \Longrightarrow y(0)=c_{1}=5 \\
y^{\prime} & =-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t \Longrightarrow y^{\prime}(0)=2 c_{2}=6 \Longrightarrow c_{2}=3 \\
y & =5 \cos 2 t+3 \sin 2 t
\end{aligned}
$$

Example V

Find the general solution of $y^{\prime \prime}-8 y^{\prime}+20 y=0$.

$$
r=4 \pm 2 i \Longrightarrow y_{\text {gen }}=c_{1} e^{4 t} \cos 2 t+c_{2} e^{4 t} \sin 2 t
$$

