Will Murray's Differential Equations, VI. Second order equations, distinct roots1

VI. Second order equations, distinct roots

Lesson Overview

- To solve the (linear, second-order, homogeneous, constant coefficient) differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

first solve the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- You'll get roots r_{1} and r_{2}. Then the general solution is

$$
y_{\text {gen }}=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} \text {. }
$$

- To find c_{1} and c_{2}, use initial conditions, usually given as $y(0)$ and $y^{\prime}(0)$. You'll get two equations in two unknowns.

Example I

Find the general solution to the differential equation:

$$
\begin{gathered}
y^{\prime \prime}(t)+2 y^{\prime}(t)-8 y(t)=0 \\
y=e^{r t} \quad \Longrightarrow \quad r^{2}+2 r-8=0 \quad\{(\text { (haracteristic equation }) \quad\} \\
r=-4,2 \quad \Longrightarrow \quad y=e^{-4 t} \text { or } y=e^{2 t}
\end{gathered}
$$

General Solution: $y_{\text {gen }}=c_{1} e^{-4 t}+c_{2} e^{2 t}$.

Will Murray's Differential Equations, VI. Second order equations, distinct roots2

Example II

Solve the initial value problem

$$
y^{\prime \prime}(t)+2 y^{\prime}(t)-8 y(t)=0, y(0)=1, y^{\prime}(0)=-10
$$

and describe the behavior of the solution as $t \rightarrow \infty$.

Example II

$$
y^{\prime \prime}(t)+2 y^{\prime}(t)-8 y(t)=0, y(0)=1, y^{\prime}(0)=-10
$$

General Solution from before:

$$
y_{\text {gen }}=c_{1} e^{-4 t}+c_{2} e^{2 t}
$$

$$
\begin{aligned}
y(0)=1 & \Longrightarrow c_{1}+c_{2}=1 \\
y^{\prime}(0)=-10 & \Longrightarrow-4 c_{1}+2 c_{2}=-10 \\
& \Longrightarrow c_{1}=2, c_{2}=-1 \\
& \Longrightarrow y=2 e^{-4 t}-e^{2 t}
\end{aligned}
$$

As $t \rightarrow \infty, y \rightarrow-\infty$, because the $e^{2 t}$ dominates.

Example III

Find the general solution of $y^{\prime \prime}-4 y^{\prime}-5 y=0$.

$$
y_{\text {gen }}=c_{1} e^{-t}+c_{2} e^{5 t}
$$

Example IV

Will Murray's Differential Equations, VI. Second order equations, distinct roots3

Solve the initial value problem:

$$
\begin{gathered}
y^{\prime \prime}-4 y^{\prime}-5 y=0, y(0)=4, y^{\prime}(0)=2 \\
y \mathrm{gen}=c_{1} e^{-t}+c_{2} e^{5 t} \\
c_{1}+c_{2}=4,5 c_{2}-c_{1}=2 \Longrightarrow c_{1}=3, c_{2}=1 \\
y=3 e^{-t}+e^{5 t}
\end{gathered}
$$

Example V

Find at least one nonzero solution to the differential equation:

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

$$
r^{2}+6 r+9=(r+3)^{2}=0 \Longrightarrow r=-3,-3
$$

So we have a solution $y=c_{1} e^{-3 t}$, but we can't (yet) find a second solution that is independent of $e^{-3 t}$. It would be incorrect to say $y_{\text {gen }}=c_{1} e^{-3 t}+c_{2} e^{-3 t}$. We'll learn how to solve this in a later lecture on repeated roots.

