V. Autonomous equations

Lesson Overview

- Autonomous differential equations have the $\overline{\text { form } y^{\prime}}=f(y)$. (No x or t appears on the right.)
- For these equations we can often understand their behavior by graphing y^{\prime} versus y first. This is called phase plane analysis.
- We use the phase plane analysis to predict the shape of solutions.
- $y^{\prime}=0$ gives equilibrium solutions.
- $y^{\prime}<0$ gives us solutions that tend downward.
- $y^{\prime}>0$ gives us solutions that tend upward.
- If we perturb the equilibrium solutions, which ones will return to equilibrium?
- Solutions will return to stable equilibria. (y^{\prime} is going downwards in the phase plane.)
- Solutions will tend away from unstable equilibria. (y^{\prime} is going upwards in the phase plane.)
- Semistable equilibria are stable on one side and unstable on the other.

Example I

Consider the differential equation:

$$
y^{\prime}=y(y-1)(2-y)
$$

A. Draw a graph of y^{\prime} versus y.
B. Identify the equilibrium solutions.

Example II

Consider the differential equation described above:

$$
y^{\prime}=y(y-1)(2-y)
$$

A. Sketch other solutions.
B. Label the equilibrium solutions as stable, semistable, or unstable.
C. Predict $y(\infty)$ for the following real life initial conditions:

$$
y(2)=5, y(1)=\frac{3}{2}, y(3)=1, y(2)=-6
$$

Example II

$$
\begin{gathered}
y^{\prime}=y(y-1)(2-y) \\
y(2)=5, y(1)=\frac{3}{2}, y(3)=1, y(2)=-6
\end{gathered}
$$

A. Make graphs!
B. 0 is stable. 1 is unstable. 2 is stable.
A. $y(2)=5 \Longrightarrow y(t \rightarrow \infty) \rightarrow 2$
B. $y(1)=\frac{3}{2} \Longrightarrow 2$
C. $y(3)=1 \Longrightarrow 1^{*}$ (Unstable, so in real life it would go to 0 or 2.)
D. $y(2)=-6 \Longrightarrow 0$

Example III

Consider the differential equation:

$$
y^{\prime}=(y-1)^{2}(y-2)(y-3)
$$

A. Draw a graph of y^{\prime} versus y.
B. Identify the equilibrium solutions.

Example IV

Consider the differential equation described above:

$$
y^{\prime}=(y-1)^{2}(y-2)(y-3)
$$

A. Sketch other solutions.
B. Label equilibrium solutions as stable, semistable, or unstable.
C. Predict $y(\infty)$ for the following real life initial conditions:

$$
y(0)=4, y(0)=\frac{1}{2}
$$

Example IV

$$
\begin{gathered}
y^{\prime}=(y-1)^{2}(y-2)(y-3) \\
y(0)=4, y(0)=\frac{1}{2}
\end{gathered}
$$

3 is unstable. 2 is stable. 1 is semistable up. So $y(0)=4$ goes to ∞, and $y(0)=\frac{1}{2}$ goes up to 1 , and in the real world, will eventually jump up to 2 .

Example V

Consider the differential equation:

$$
y^{\prime}=y^{3}-4 y^{2}+5 y-2
$$

A. Draw a graph of y^{\prime} versus y.
B. Identify the equilibrium solutions.

Example VI

Consider the differential equation described above:

$$
y^{\prime}=y^{3}-4 y^{2}+5 y-2
$$

A. Sketch other solutions.
B. Label the equilibrium solutions as stable, semistable, or unstable.
C. Describe what ranges of values for the initial condition $y(0)=y_{0}$ would lead to what limiting behavior for the solution.

Example VI

Consider the differential equation described above:

$$
y^{\prime}=y^{3}-4 y^{2}+5 y-2
$$

A. The curves between $y=1$ and $y=2$ should be sloping down slightly.
B. $y=1$ is a semistable equilibrium. $y=2$ is an unstable equilibrium.
C. - If $y_{0}<1$, then $y \rightarrow-\infty$ as $t \rightarrow \infty$.

- If $1 \leq y_{0}<2$, then $y \rightarrow 1$ as $t \rightarrow \infty$.
- If $y_{0}=2$, then $y \rightarrow 2$ as $t \rightarrow \infty$.
- If $y_{0}>2$, then $y \rightarrow \infty$ as $t \rightarrow \infty$.

