Will Murray's Differential Equations, XXX. Partial differential equations: Solution of the heat equat
XXX. Partial differential equations:

Solution of the heat equation

Lesson Overview

- We want to solve the heat equation and its boundary and initial conditions:

$$
\begin{aligned}
u_{t} & =\alpha^{2} u_{x x} \\
u(0, t) & =0 \\
u(L, t) & =0 \\
u(x, 0) & =f(x), 0 \leq x \leq L
\end{aligned}
$$

Solving the heat equation

- Using separation of variables (see earlier lecture), we get the solution to the equation and boundary conditions:

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} e^{-\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}} t}
$$

- Then we try to match the initial condition:

$$
u(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}=f(x)
$$

- So we need a Fourier series for $f(x)$ using only sines.

Procedure for the heat equation

1. Extend $f(x)$ on $-L \leq x \leq 0$ to be an odd function, so that its Fourier series will have only sines.
2. Find the Fourier series for $f(x)$:

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

3. Plug the coefficients back into the solution above of the heat equation:

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} e^{-\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}} t}
$$

Example I

Consider the boundary value problem below:

$$
\begin{aligned}
u_{t} & =\alpha^{2} u_{x x} \\
u(0, t) & =0, t \geq 0 \\
u(L, t) & =0, t \geq 0 \\
u(x, 0) & =f(x)=3,0 \leq x \leq L=3
\end{aligned}
$$

Extend the initial function $f(x)$ to be an odd function.

$$
f(x)= \begin{cases}3 & \text { if } 0 \leq x \leq 3 \\ -3 & \text { if }-3<x<0\end{cases}
$$

Example II

Find a Fourier sine series for the initial function from the example above:

$$
f(x)= \begin{cases}3 & \text { if } 0 \leq x \leq 3 \\ -3 & \text { if }-3<x<0\end{cases}
$$

$$
\begin{aligned}
b_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \\
& =\frac{2}{3} \int_{0}^{3} 3 \sin \frac{n \pi x}{3} d x \\
& =\left.2\left(-\frac{3}{n \pi} \cos \frac{n \pi x}{3}\right)\right|_{x=0} ^{x=3} \\
& =\frac{6}{n \pi}(1-\cos n \pi) \\
& = \begin{cases}\frac{12}{n \pi} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }\end{cases} \\
F S(x) & =\frac{12}{\pi} \sin \frac{\pi x}{3}+\frac{12}{3 \pi} \sin \frac{3 \pi x}{3}+\frac{12}{5 \pi} \sin \frac{5 \pi x}{3}+\cdots
\end{aligned}
$$

Example III

Solve the boundary value problem from the example above:

$$
\left.\begin{array}{rl}
u_{t} & =\alpha^{2} u_{x x} \\
u(0, t) & =0, t \geq 0 \\
u(L, t) & =0, t \geq 0 \\
u(x, 0) & =f(x)=3,0 \leq x \leq L=3
\end{array}\right] \begin{aligned}
& b_{n}= \begin{cases}\frac{12}{n \pi} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }\end{cases} \\
& u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} e^{-\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}} t} \\
&= \frac{12}{\pi} \sin \frac{\pi x}{3} e^{-\frac{\pi^{2} \alpha^{2}}{9} t}+\frac{12}{3 \pi} \sin \frac{3 \pi x}{3} e^{-\frac{9 \pi^{2} \alpha^{2}}{9} t}+\frac{12}{5 \pi} \sin \frac{5 \pi x}{3} e^{-\frac{25 \pi^{2} \alpha^{2}}{9} t}+\cdots \\
&=\sum_{n=0}^{\infty} \frac{12}{(2 n+1) \pi} \sin \frac{(2 n+1) \pi x}{3} e^{-\frac{(2 n+1)^{2} \pi^{2} \alpha^{2}}{9} t}
\end{aligned}
$$

Example IV

Consider the boundary value problem below:

$$
\begin{aligned}
u_{t} & =4 u_{x x} \\
u(0, t) & =0, t \geq 0 \\
u(4, t) & =0, t \geq 0 \\
u(x, 0) & =f(x)=x, 0 \leq x \leq L=4
\end{aligned}
$$

Extend the initial function $f(x)$ to be an odd function.

$$
f(x)=x,-4 \leq x \leq 4
$$

Example V

Find a Fourier sine series for the initial function from the example above:

$$
f(x)=x,-4 \leq x \leq 4
$$

$$
\begin{aligned}
b_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \\
& =\frac{1}{2} \int_{0}^{4} x \sin \frac{n \pi x}{4} d x \quad\{\text { Integrate by parts. } \\
& =\left.\frac{1}{2}\left[-\frac{4 x}{n \pi} \cos \frac{n \pi x}{4}+\frac{16}{n^{2} \pi^{2}} \sin \frac{n \pi x}{4}\right]\right|_{x=0} ^{x=4} \\
& =\frac{1}{2}\left[-\frac{16}{n \pi} \cos n \pi+0+0-0\right] \\
& =-\frac{8}{n \pi} \cos n \pi \\
& =(-1)^{n+1} \frac{8}{n \pi} \\
F S(x) & =\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{4} \\
& \text { Example VI }
\end{aligned}
$$

Solve the boundary value problem from the example above:

$$
\begin{aligned}
u_{t} & =4 u_{x x} \\
u(0, t) & =0, t \geq 0 \\
u(4, t) & =0, t \geq 0 \\
u(x, 0) & =f(x)=x, 0 \leq x \leq L=4 \\
b_{n} & =(-1)^{n+1} \frac{8}{n \pi} \\
u(x, t)= & \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} e^{-\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}} t} \\
= & \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{4} e^{-\frac{n^{2} \pi^{2}}{4} t}
\end{aligned}
$$

