III. Slope/direction fields

Lesson Overview

- If you can manipulate a differential equation into the form y' = f(x, y), then you can use this to draw a <u>slope field</u>, also known as a direction field.
- The slopes show the trajectories of the solutions.

Solution trajectories

- The solutions do not cross each other.
- The different solution trajectories correspond to different values of the arbitrary constant C in the general solution to the differential equation.
- To find which solution trajectory you want, use an <u>initial condition</u> $y(x_0) = y_0$. (Algebraically, you're solving for the constant C.)

Example I

Draw a direction field for the following differential equation:

$$y' = x + 2y$$

Make chart and fill in:

Example II

Use the slope field for y' = x + 2y from Example I.

- A. Draw some solution trajectories for the differential equation.
- B. Confirm that the following is the general solution to the differential equation.

$$y(x) = -\frac{1}{2}x - \frac{1}{4} + Ce^{2x}$$

C. Identify which trajectories correspond to which values of C in the general solution.

Example II

- A. Sketch:
- B. Find y' and check. (We'll learn later how to derive this solution from scratch.)
- C. C = 0 gives the line $y = -\frac{1}{2}x \frac{1}{4}$. C > 0 is above this and goes up to ∞ . C < 0 is below the line and goes down to $-\infty$.

Example III

Draw a direction field for the following differential equation:

$$y' = -\frac{x}{y}$$

Will Murray's Differential Equations, III. Slope/direction fields3

Example III

Make chart and fill in:

Example IV

Begin with your field above for the differential equation $y' = -\frac{x}{y}$.

- A. Draw some solution trajectories for the differential equation.
- B. Confirm that the following is the general solution to the differential equation.

$$x^2 + y^2 = C$$

C. Solve the differential equation subject to the initial condition y(-3) = -4.

Example IV

- A. Circles.
- B. Find y' and check. (We'll learn later how to derive this solution from scratch.)

C.
$$C = 25$$
, so $x^2 + y^2 = 25$.

Example V

Draw a direction field for the following autonomous differential equation:

$$y' = y^3 - 3y^2 + 2y$$

Example V

First factor:

$$y' = y(y^2 - 3y + 2)$$

= $y(y - 1)(y - 2)$

Plot y' versus y, a cubic with zeros at y = 0, 1, 2.

In each range we have y negative, positive, negative, positive. And it doesn't depend on xat all:

Example VI

Begin with your field above for the differential equation $y' = y^3 - 3y^2 + 2y$.

- A. Draw some solution trajectories for the differential equation.
- B. Describe the limiting behavior of the solution above as $x \to \infty$ for the following starting points:

i.
$$y(0) = 1$$

ii. $y(1) = -1$
iii. $y(2) = \frac{1}{2}$
iv. $y(3) = \frac{3}{2}$
v. $y(2) = 3$

Will Murray's Differential Equations, III. Slope/direction fields5

Example VI

- y(0) = 1
- y(1) = -1
- $y(2) = \frac{1}{2}$
- $y(3) = \frac{3}{2}$
- y(2) = 3
- A. Sketch.
- B. Describe the limiting behavior of the solution above as $x \to \infty$ for the following starting points:

i.
$$y \rightarrow 1$$

ii. $y \rightarrow -\infty$
iii. $y \rightarrow 1$
iv. $y \rightarrow 1$
v. $y \rightarrow \infty$