III. Slope/direction fields

Lesson Overview

- If you can manipulate a differential equation into the form $y^{\prime}=f(x, y)$, then you can use this to draw a slope field, also known as a direction field.
- The slopes show the trajectories of the solutions.

Solution trajectories

- The solutions do not cross each other.
- The different solution trajectories correspond to different values of the arbitrary constant C in the general solution to the differential equation.
- To find which solution trajectory you want, use an initial condition $y\left(x_{0}\right)=y_{0}$. (Algebraically, you're solving for the constant C.)

Example I

Draw a direction field for the following differential equation:

$$
y^{\prime}=x+2 y
$$

Make chart and fill in:

Example II

Use the slope field for $y^{\prime}=x+2 y$ from Example I.
A. Draw some solution trajectories for the differential equation.
B. Confirm that the following is the general solution to the differential equation.

$$
y(x)=-\frac{1}{2} x-\frac{1}{4}+C e^{2 x}
$$

C. Identify which trajectories correspond to which values of C in the general solution.

Example II

A. Sketch:
B. Find y^{\prime} and check. (We'll learn later how to derive this solution from scratch.)
C. $C=0$ gives the line $y=-\frac{1}{2} x-\frac{1}{4}$. $C>0$ is above this and goes up to $\infty . C<0$ is below the line and goes down to $-\infty$.

Example III

Draw a direction field for the following differential equation:

$$
y^{\prime}=-\frac{x}{y}
$$

Example III

Make chart and fill in:

Example IV

Begin with your field above for the differential equation $y^{\prime}=-\frac{x}{y}$.
A. Draw some solution trajectories for the differential equation.
B. Confirm that the following is the general solution to the differential equation.

$$
x^{2}+y^{2}=C
$$

C. Solve the differential equation subject to the initial condition $y(-3)=-4$.

Example IV

A. Circles.
B. Find y^{\prime} and check. (We'll learn later how to derive this solution from scratch.)
C. $C=25$, so $x^{2}+y^{2}=25$.

Example V

Draw a direction field for the following autonomous differential equation:

$$
y^{\prime}=y^{3}-3 y^{2}+2 y
$$

Example V

First factor:

$$
\begin{aligned}
y^{\prime} & =y\left(y^{2}-3 y+2\right) \\
& =y(y-1)(y-2)
\end{aligned}
$$

Plot y^{\prime} versus y, a cubic with zeros at $y=0,1,2$.
In each range we have y negative, positive, negative, positive. And it doesn't depend on x at all:

Example VI

Begin with your field above for the differential equation $y^{\prime}=y^{3}-3 y^{2}+2 y$.
A. Draw some solution trajectories for the differential equation.
B. Describe the limiting behavior of the solution above as $x \rightarrow \infty$ for the following starting points:
i. $y(0)=1$
ii. $y(1)=-1$
iii. $y(2)=\frac{1}{2}$
iv. $y(3)=\frac{3}{2}$
v. $y(2)=3$

Example VI

- $y(0)=1$
- $y(1)=-1$
- $y(2)=\frac{1}{2}$
- $y(3)=\frac{3}{2}$
- $y(2)=3$
A. Sketch.
B. Describe the limiting behavior of the solution above as $x \rightarrow \infty$ for the following starting points:
i. $y \rightarrow 1$
ii. $y \rightarrow-\infty$
iii. $y \rightarrow 1$
iv. $y \rightarrow 1$
v. $y \rightarrow \infty$

