Will Murray's Differential Equations, XXIX. Partial differential equations: Fourier series1
XXIX. Partial differential equations:

Fourier series

Lesson Overview

- The Fourier series for a function $f(x)$ is an expansion into sines and cosines as follows:
$F S(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right)$
- Find the Fourier coefficients by the formulas:

$$
\begin{aligned}
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}, n=0,1,2, \ldots
$$

Notes on Fourier series

- For $n=0$, the formula simplifies:

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x
$$

- The function $f(x)$ must be periodic with period $2 L$, that is, $f(x+2 L)=f(x)$ for all x.

Even and odd functions

- Definition: A function $f(x)$ is even if $f(-x)=f(x)$ for all x. It is odd if $f(-x)=$ $-f(x)$ for all x.
- Examples: $\sin x$ is odd. $\cos x$ is even. x is odd. x^{2} is even, as is x^{n} for any even $n . x^{n}$ is odd for any odd n. The zero function is both even and odd.
- A function is even iff its graph has mirror symmetry across the y-axis. A function is odd iff the graph has rotational symmetry around the origin.

Even and odd functions and Fourier series

- If f is even, then $f(x) \sin \frac{n \pi x}{L}$ is odd, so $b_{n}=0$, and the Fourier Series contains only cosines:

$$
\begin{aligned}
a_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
b_{n} & =0
\end{aligned}
$$

- If f is odd, then $f(x) \cos \frac{n \pi x}{L}$ is odd, so $a_{n}=$ 0 , and the Fourier Series contains only sines:

$$
\begin{aligned}
a_{n} & =0 \\
b_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}, n=1,2, \ldots
$$

Extending functions

- If the function $f(x)$ is only defined for $0 \leq x \leq L$ (as in the heat equation), then we can extend $f(x)$ on $-L \leq x \leq 0$ to be either even or odd, whichever we like.
- If we want a cosine series, we extend $f(x)$ to be even:

$$
f(-x):=f(x)
$$

- If we want a sine series, we extend $f(x)$ to be odd:

$$
f(-x):=-f(x)
$$

- To solve the heat equation in the next lecture, we will need to use sine series, so we will extend $f(x)$ to be odd.

Example I

Find a Fourier Series for the function below:

$$
f(x)= \begin{cases}0 & \text { if }-2<x \leq 0 \\ x & \text { if } 0 \leq x \leq 2 \\ f(x \pm 4) & \text { if } x \leq-2 \text { or } x>2\end{cases}
$$

Graph. Here f is periodic with period 4 , and $L=$ 2.

$$
\begin{aligned}
a_{0} & =\frac{1}{2} \int_{-2}^{2} f(x) d x \\
& =\frac{1}{2} \int_{0}^{2} x d x \\
& =\left.\frac{1}{4} x^{2}\right|_{x=0} ^{x=2} \\
& =1
\end{aligned}
$$

Note that $\frac{a_{0}}{2}$ is always the average value of the function.

Example I

$$
\begin{aligned}
& f(x)= \begin{cases}0 & \text { if }-2<x \leq 0 \\
x & \text { if } 0 \leq x \leq 2\end{cases} \\
& a_{n}=\frac{1}{2} \int_{-2}^{2} f(x) \cos \frac{n \pi x}{2} d x \\
&=\frac{1}{2} \int_{0}^{2} x \cos \frac{n \pi x}{2} d x \quad\{\text { Integrate by parts. } \\
&=\left.\frac{1}{2}\left(\frac{2}{n \pi} x \sin \frac{n \pi x}{2}+\frac{4}{n^{2} \pi^{2}} \cos \frac{n \pi x}{2}\right)\right|_{x=0} ^{x=2} \\
&=\frac{1}{2}\left[0+\frac{4}{n^{2} \pi^{2}} \cos n \pi-0-\frac{4}{n^{2} \pi^{2}}\right] \\
&= \begin{cases}0 & \text { if } n \text { is even } \\
-\frac{4}{n^{2} \pi^{2}} & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Example I

$$
f(x)= \begin{cases}0 & \text { if }-2<x \leq 0 \\ x & \text { if } 0 \leq x \leq 2\end{cases}
$$

$$
b_{n}=\frac{1}{2} \int_{-2}^{2} f(x) \sin \frac{n \pi x}{2} d x
$$

$$
=\frac{1}{2} \int_{0}^{2} x \sin \frac{n \pi x}{2} d x \quad\{\text { Integrate by parts }
$$

$$
=\left.\frac{1}{2}\left(-\frac{2}{n \pi} x \cos \frac{n \pi x}{2}+\frac{4}{n^{2} \pi^{2}} \sin \frac{n \pi x}{2}\right)\right|_{x=0} ^{x=2}
$$

$$
=\frac{1}{2}\left[-\frac{4}{n \pi} \cos n \pi+0+0-0\right]
$$

$$
=(-1)^{n+1} \frac{2}{n \pi}
$$

Conclusion: The Fourier Series for f is

$$
F S(x)=\frac{1}{2}-\frac{4}{\pi^{2}} \cos \frac{\pi x}{2}+\frac{2}{\pi} \sin \frac{\pi x}{2}-\frac{2}{2 \pi} \sin \frac{2 \pi x}{2}-\frac{4}{9 \pi^{2}} \cos \frac{3 \pi x}{2}+\frac{2}{3 \pi} \sin \frac{3 \pi x}{2}-\cdots
$$

Example II

Use the Fourier series derived above to find the value of the series

$$
1+\frac{1}{9}+\frac{1}{25}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}} .
$$

$$
F S(x)=\frac{1}{2}-\frac{4}{\pi^{2}} \cos \frac{\pi x}{2}+\frac{2}{\pi} \sin \frac{\pi x}{2}-\frac{2}{2 \pi} \sin \frac{2 \pi x}{2}-\frac{4}{9 \pi^{2}} \cos \frac{3 \pi x}{2}+\frac{2}{3 \pi} \sin \frac{3 \pi x}{2}-\cdots
$$

Plug in $x=0$:

$$
\begin{aligned}
f(0) & =F S(0) \\
0 & =\frac{1}{2}-\frac{4}{\pi^{2}}-\frac{4}{9 \pi^{2}}-\frac{4}{25 \pi^{2}}-\cdots \\
& =\frac{1}{2}-\frac{4}{\pi^{2}}\left(1+\frac{1}{9}+\frac{1}{25}+\cdots\right) \\
\frac{1}{2} & =\frac{4}{\pi^{2}}\left(1+\frac{1}{9}+\frac{1}{25}+\cdots\right) \\
\frac{\pi^{2}}{8} & =\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}
\end{aligned}
$$

Example III

Plug in the endpoint value $x=2$ to the Fourier series above. What does the Fourier series converge to when the original function is discontinuous?

$$
F S(x)=\frac{1}{2}-\frac{4}{\pi^{2}} \cos \frac{\pi x}{2}+\frac{2}{\pi} \sin \frac{\pi x}{2}-\frac{2}{2 \pi} \sin \frac{2 \pi x}{2}-\frac{4}{9 \pi^{2}} \cos \frac{3 \pi x}{2}+\frac{2}{3 \pi} \sin \frac{3 \pi x}{2}-\cdots
$$

$$
\begin{aligned}
F S(2) & =\frac{1}{2}+\frac{4}{\pi^{2}}+\frac{4}{9 \pi^{2}}+\frac{4}{25 \pi^{2}}+\cdots \\
& =\frac{1}{2}+\frac{4}{\pi^{2}}\left(1+\frac{1}{9}+\frac{1}{25}+\cdots\right) \\
& =\frac{1}{2}+\frac{4}{\pi^{2}} \frac{\pi^{2}}{8} \quad \text { \{by the series above } \\
& =\frac{1}{2}+\frac{1}{2} \\
F S(2) & =1
\end{aligned}
$$

The series splits the difference and converges to a point exactly halfway between the left and right hand limit of the original function f !

Example IV

Extend the function below in such a way that its Fourier series will contain only cosines:

$$
f(x)=3-x, 0 \leq x \leq 3
$$

Draw graph. We want it to be even, so first we extend:

$$
f(x):=x+3,-3 \leq x<0
$$

$L=3$, so we now extend it to have period $2 L=6$:

$$
f(x \pm 6):=f(x)
$$

Example V

Find a Fourier series for the function defined above that contains only cosines:

$$
\begin{aligned}
f(x)= & \begin{cases}x+3, & -3 \leq x<0 \\
3-x, & 0 \leq x \leq 3 \\
f(x \pm 6), & x \notin[-3,3]\end{cases} \\
a_{0} & =\frac{2}{3} \int_{0}^{3}(3-x) d x \\
& =3
\end{aligned}
$$

Example V

$$
\begin{aligned}
& f(x)= \begin{cases}x+3, & -3 \leq x<0 \\
3-x, & 0 \leq x \leq 3\end{cases} \\
a_{n} & =\frac{2}{3} \int_{0}^{3}(3-x) \cos \frac{n \pi x}{3} d x \\
& =\frac{2}{3}\left[9 \sin \frac{n \pi x}{3}-\frac{3}{n \pi} x \sin \frac{n \pi x}{3}-\left.\frac{9}{n^{2} \pi^{2}} \cos \frac{n \pi x}{3}\right|_{x=0} ^{x=3}\right] \\
& =\frac{2}{3}\left(-\frac{9}{n^{2} \pi^{2}}\right)(\cos n \pi-1) \\
& = \begin{cases}\frac{12}{n^{2} \pi^{2}} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }\end{cases} \\
F S(x) & =\frac{3}{2}+\frac{12}{\pi^{2}} \cos \frac{\pi x}{3}+\frac{12}{9 \pi^{2}} \cos \frac{3 \pi x}{3}+\frac{12}{25 \pi^{2}} \cos \frac{5 \pi x}{3}+\cdots \\
= & \frac{3}{2}+\frac{12}{\pi^{2}} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}} \cos \frac{(2 n+1) \pi x}{3}
\end{aligned}
$$

