XXVIII. Partial differential equations:

 Separation of variables
Lesson Overview

- Separation of variables is a technique for solving some partial differential equations.
- Assume the function you're looking for, $u(x, t)$, can be written as a product of a function of x only and a function of t only:

$$
u(x, t)=X(x) T(t)
$$

- Then it is easy to take derivatives:

$$
\begin{aligned}
u_{x} & =X^{\prime}(x) T(t) \\
u_{t} & =X(x) T_{x x}(t)
\end{aligned} \quad u_{t t}=X(x) T(t) T^{\prime \prime}(t)
$$

- Plug them in to the partial differential equation.

Separation of variables

- Try to separate the variables:
$($ function of x only $)=($ function of t only $)$
- If you can, then both sides must be constant:
(function of x only) $=\lambda=($ function of t only)
- Reorganize these into two ordinary differential equations

$$
\begin{aligned}
(\text { function of } x \text { only) } & =\lambda \\
\text { (function of } t \text { only) } & =\lambda
\end{aligned}
$$

which you can solve separately for X and T.

Example I

Use separation of variables to convert the following partial differential equation into two ordinary differential equations:

$$
u_{x x}+x u_{t}=0
$$

$$
\begin{aligned}
u(x, t) & =X(x) T(t) \\
u_{x} & =X^{\prime}(x) T(t) \\
u_{x x} & =X^{\prime \prime}(x) T(t) \\
u_{t} & =X(x) T^{\prime}(t)
\end{aligned}
$$

Plug in to the PDE: $\quad X^{\prime \prime}(x) T(t)+x X(x) T^{\prime}(t)=0$

$$
-\frac{X^{\prime \prime}(x)}{x X(x)}=\frac{T^{\prime}(t)}{T(t)}=\lambda
$$

$$
X^{\prime \prime}(x)+\lambda x X(x)=0
$$

$$
T^{\prime}(t)-\lambda T(t)=0
$$

Example II

Use separation of variables to convert the following partial differential equation into two ordinary differential equations:

$$
u_{t t}+u_{x t}+u_{x}=0
$$

$$
\begin{aligned}
u(x, t) & =X(x) T(t) \\
u_{x} & =X^{\prime}(x) T(t) \\
u_{t t} & =X(x) T^{\prime \prime}(t) \\
u_{x t} & =X^{\prime}(x) T^{\prime}(t)
\end{aligned}
$$

Plug in to the PDE: $\quad X(x) T^{\prime \prime}(t)+X^{\prime}(x) T^{\prime}(t)+X^{\prime}(x) T(t)=0$

$$
X(x) T^{\prime \prime}(t)+X^{\prime}(x)\left[T^{\prime}(t)+T(t)\right]=0
$$

$$
X^{\prime}(x)\left[T^{\prime}(t)+T(t)\right]=-X(x) T^{\prime \prime}(t)
$$

$$
-\frac{X^{\prime}(x)}{X(x)}=\frac{T^{\prime \prime}(t)}{T^{\prime}(t)+T(t)}=\lambda
$$

$$
X^{\prime}(x)+\lambda X(x)=0
$$

$$
T^{\prime \prime}(t)-\lambda T^{\prime}(t)-\lambda T(t)=0
$$

Example III

Use separation of variables to convert the following partial differential equation into two ordinary differential equations:

$$
\begin{aligned}
& u_{x x}+u_{t t}+t u=0 \\
& \\
& \begin{aligned}
u(x, t) & =X(x) T(t) \\
u_{x x} & =X^{\prime \prime}(x) T(t) \\
u_{t t} & =X(x) T^{\prime \prime}(t)
\end{aligned}
\end{aligned}
$$

Plug in to the PDE: $\quad X^{\prime \prime}(x) T(t)+X(x) T^{\prime \prime}(t)+t X(x) T(t)=0$

$$
\begin{aligned}
X^{\prime \prime}(x) T(t)+X(x)\left[T^{\prime \prime}(t)+t T(t)\right] & =0 \\
X^{\prime \prime}(x) T(t) & =-X(x)\left[T^{\prime \prime}(t)+t T(t)\right] \\
-\frac{X^{\prime \prime}(x)}{X(x)} & =\frac{T^{\prime \prime}(t)+t T(t)}{T(t)}=\lambda \\
X^{\prime \prime}(x)+\lambda X(x) & =0 \\
T^{\prime \prime}(t)+(t-\lambda) T(t) & =0
\end{aligned}
$$

Example IV

Use separation of variables to convert the heat equation below into two ordinary differential equations. (For later purposes, use $-\lambda$ instead of λ for the separation constant.)

$$
u_{t}=\alpha^{2} u_{x x}
$$

$$
\begin{aligned}
u(x, t) & =X(x) T(t) \\
u_{x} & =X^{\prime}(x) T(t) \\
u_{x x} & =X^{\prime \prime}(x) T(t) \\
u_{t} & =X(x) T^{\prime}(t)
\end{aligned}
$$

Plug in to the PDE: $\quad X(x) T^{\prime}(t)=\alpha^{2} X^{\prime \prime}(x) T(t)$

$$
\begin{aligned}
\frac{T^{\prime}(t)}{\alpha^{2} T(t)} & =\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda \\
\frac{T^{\prime}(t)}{\alpha^{2} T(t)} & =-\lambda \\
\frac{X^{\prime \prime}(x)}{X(x)} & =-\lambda \\
X^{\prime \prime}(x)+\lambda X(x) & =0
\end{aligned}
$$

Example V

Solve the two ordinary differential equations below from the heat equation. Assume that $\lambda>0$ and find solutions that satisfy the boundary conditions $u(0, t)=u(L, t)=0, t \geq 0$.

$$
\begin{aligned}
\frac{T^{\prime}(t)}{\alpha^{2} T(t)} & =-\lambda \\
X^{\prime \prime}(x)+\lambda X(x) & =0
\end{aligned}
$$

$$
\begin{aligned}
\frac{T^{\prime}(t)}{\alpha^{2} T(t)} & =-\lambda \quad\{\text { Separable first order ODE. }\} \\
\frac{T^{\prime}(t)}{T(t)} & =-\lambda \alpha^{2} \quad\{\text { Integrate both sides. } \\
\ln |T(t)| & =-\lambda \alpha^{2} t+C \\
T(t) & = \pm e^{-\lambda \alpha^{2} t+C} \\
& = \pm e^{C} e^{-\lambda \alpha^{2} t+C} \\
& =k e^{-\lambda \alpha^{2} t}
\end{aligned}
$$

Example V

$$
\begin{aligned}
T(t) & =k e^{-\lambda \alpha^{2} t} \\
X^{\prime \prime}(x)+\lambda X(x) & =0
\end{aligned}
$$

$$
\begin{aligned}
X^{\prime \prime}(x)+\lambda X(x) & =0 \quad\left\{\begin{array}{l}
\text { Second order linear ODE } \\
\text { with constant coefficients. } \\
\text { Guess } X(x)=e^{r x} .
\end{array}\right\} \\
r^{2}+\lambda & =0 \\
r & = \pm \sqrt{-\lambda}
\end{aligned}
$$

Suppose $\lambda<0$. Then $-\lambda>0$, so $r= \pm \sqrt{-\lambda}$
leads to real solutions:

$$
\begin{aligned}
X(x) & =a e^{\sqrt{-\lambda} x}+b e^{-\sqrt{-\lambda} x} \\
u(x, t) & =\left(a e^{\sqrt{-\lambda} x}+b e^{-\sqrt{-\lambda} x}\right) e^{-\lambda \alpha^{2} t} \quad \text { \{Absorb the } k \text { as before. } \\
u(0, t) & =(a+b) e^{-\lambda \alpha^{2} t}=0 \quad\{\text { Plug in } t=0: \\
u(0,0) & =a+b=0 \\
u(L, t) & =\left(a e^{\sqrt{-\lambda} L}+b e^{-\sqrt{-\lambda} L}\right) e^{-\lambda \alpha^{2} t}
\end{aligned}
$$

Plug in $t=0: \quad u(L, 0)=a e^{\sqrt{-\lambda} L}+b e^{-\sqrt{-\lambda} L}=0$

Example V

$$
\begin{aligned}
a+b & =0 \\
a e^{\sqrt{-\lambda} L}+b e^{-\sqrt{-\lambda} L} & =0
\end{aligned}
$$

Solve the two equations for a and b :

$$
\begin{aligned}
a+b & =0 \Longrightarrow b=-a \\
a e^{\sqrt{-\lambda} L}+b e^{-\sqrt{-\lambda} L} & =0 \\
a e^{\sqrt{-\lambda} L}-a e^{-\sqrt{-\lambda} L} & =0 \\
\text { Multiply by } e^{\sqrt{-\lambda L}}: a e^{2 \sqrt{-\lambda L}}-a & =0 \\
a\left(e^{2 \sqrt{-\lambda} L}-1\right) & =0
\end{aligned}
$$

Since $\lambda<0$ and $L>0$, we have $2 \sqrt{-\lambda} L \neq 0$, so $e^{2 \sqrt{-\lambda} L} \neq 1$. So we can divide by $e^{2 \sqrt{-\lambda L}}-1$ and get $a=0$. But then $b=0$, so once again we get $u(x, t) \equiv 0$.
Conclusion: This solution isn't productive. We must have $\lambda>0$. Then we get complex solutions:

$$
\begin{aligned}
r & = \pm \sqrt{-\lambda} \\
& = \pm i \sqrt{\lambda} \\
X(x) & =a \cos (\sqrt{\lambda} x)+b \sin (\sqrt{\lambda} x) \\
u(x, t) & =[a \cos (\sqrt{\lambda} x)+b \sin (\sqrt{\lambda} x)] e^{-\lambda \alpha^{2} t} \quad \text { Absorb the } \\
u(0, t) & =0 \Longrightarrow a=0 \\
u(x, t) & =b \sin (\sqrt{\lambda} x) e^{-\lambda \alpha^{2} t} \\
u(L, t) & =0 \Longrightarrow \\
b \sin (\sqrt{\lambda} L) e^{-\lambda \alpha^{2} t} & =0 \\
\text { Multiply by } e^{\lambda \alpha^{2} t}: b \sin (\sqrt{\lambda} L) & =0 \quad\left\{\begin{array}{l}
\text { If } b=0, \text { we lose all solutions. } \\
\text { So we assume } b \neq 0, \text { so } \\
\sin (\sqrt{\lambda} L)=0 .
\end{array}\right\} \\
\sqrt{\lambda} L & =n \pi \text { for any integer } n \\
\lambda & =\frac{n^{2} \pi^{2}}{L^{2}}
\end{aligned}
$$

We get one solution for each $n: \quad X_{n}(x)=b_{n} \sin \frac{n \pi x}{L}$

$$
\begin{aligned}
T_{n}(t) & =e^{-\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}} t} \\
u_{n}(x, t) & =b_{n} \sin \frac{n \pi x}{L} e^{-\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}} t}
\end{aligned}
$$

