Will Murray's Differential Equations, XXVI. Partial differential equations: Review of partial derivat

XXVI. Partial differential equations:

 Review of partial derivatives
Lesson Overview

- Let $u(x, t)$ be a function of two variables.
- The partial derivative of u with respect to x is defined as

$$
u_{x}=\frac{\partial u}{\partial x}:=\lim _{h \rightarrow 0} \frac{u(x+h, t)-u(x, t)}{h} .
$$

- Geometrically, u_{x} represents the slope as you walk in the x-direction on the surface.

Computing partial derivatives

- Algebraically, to find u_{x} you treat the other variable t as a constant and take the derivative with respect to x.
- We can also take second partial derivatives: $u_{x x}, u_{x t}, u_{t x}, u_{t t}$.
- Clairaut's Theorem says that the two "mixed partials" are always equal:

$$
u_{x t}=u_{t x}
$$

Example I

Let $u(x, t)=x^{2} t$. Find the first partial derivatives u_{x} and u_{t}.
$u_{x}=2 x t . u_{t}=x^{2}$.

Example II

Let $u(x, t)=\sin x \cos \left(t^{2}\right)+3 t$. Find the first partial derivatives u_{x} and u_{t}.
$u_{x}=\cos x \cos t^{2} . u_{t}=-(\sin x) 2 t \sin t^{2}+3$.

Example III

Let $u(x, t)=x^{2}+t^{2}$. Find all first and second partial derivatives and confirm Clairaut's Theorem for u.

$$
\begin{aligned}
u_{x} & =\boxed{2 x} \\
u_{t} & =-2 t \\
\left(u_{x}\right)_{x} & =-2 \\
\left(u_{x}\right)_{t} & =0 \\
\left(u_{t}\right)_{t} & =2 \\
\left(u_{t}\right)_{x} & =0=\left(u_{x}\right)_{t} \checkmark
\end{aligned}
$$

Clairaut's Theorem holds!

Example IV

Let $u(x, t)=\frac{x}{x+t}$. Find all first and second partial derivatives and confirm Clairaut's Theorem for u.

$$
\begin{aligned}
u_{x} & =\frac{t}{(x+t)^{2}} \\
u_{t} & =-\frac{x}{(x+t)^{2}} \\
\left(u_{x}\right)_{x} & =-\frac{2 t}{(x+t)^{3}} \\
\left(u_{x}\right)_{t} & =\frac{(x+t)^{2}-2 t(x+t)}{(x+t)^{4}}=\frac{x-t}{(x+t)^{3}} \\
\left(u_{t}\right)_{t} & =\frac{2 x}{(x+t)^{3}} \\
\left(u_{t}\right)_{x} & =-\frac{(x+t)^{2}-2 x(x+t)}{(x+t)^{4}}=\frac{x-t}{(x+t)^{3}}=\left(u_{x}\right)_{t} \checkmark
\end{aligned}
$$

Clairaut's Theorem holds!

Example V

If $u_{x}=e^{x t} \cos t$, what is $u(x, t)$?
Treat t, and hence $\cos t$ as a constant:

$$
\begin{aligned}
u & =\int e^{x t} \cos t d x \\
& =\cos t \int e^{x t} d x \\
& =\frac{1}{t}(\cos t) e^{x t}+C
\end{aligned}
$$

But $u=\frac{1}{t}(\cos t) e^{x t}+t^{2}$ would also satisfy $u_{x}=$ $e^{x t} \cos t$, since the t^{2} would disappear under $\frac{\partial}{\partial x}$. So the general solution is

$$
u(x, t)=\frac{1}{t}(\cos t) e^{x t}+f(t),
$$

Will Murray's Differential Equations, XXVI. Partial differential equations: Review of partial derivat
where $f(t)$ is any function of t only. (We don't have to include $+C$ since that could be included in $f(t)$.)

