Lesson Overview

- Euler's method is a way to find numerical approximations for initial value problems that we can't solve analytically.
- It is based on drawing lines along slopes in a direction field.

Formulas for Eulers method

- Start with an initial value problem in the form $y^{\prime}(t)=f(t, y), y\left(t_{0}\right)=y_{0}$.
- Choose a step size h (usually given).
- Start at $\left(t_{0}, y_{0}\right)$ and make iterative steps:

$$
\begin{aligned}
t_{n+1} & :=t_{n}+h \\
y_{n+1} & =y_{n}+h f\left(t_{n}, y_{n}\right)
\end{aligned}
$$

- Continue until you arrive at the value of t for which you need to approximate $y(t)$.

Example I

Use Euler's method with step size $h=0.1$ to estimate $y(0.4)$ in the initial value problem $y^{\prime}=$ $1+t-y, y(0)=1$.

$$
\begin{aligned}
\left(t_{0}, y_{0}\right)=(0,1) & \Longrightarrow y^{\prime}=f(0,1)=0 \\
y_{1} & =1+0.1(0)=1 \\
\left(t_{1}, y_{1}\right)=(0.1,1) & \Longrightarrow y^{\prime}=f(0.1,1)=0.1 \\
y_{2} & =1+0.1(0.1)=1.01 \quad \text { \{Highlight this for use later. \} } \\
\left(t_{2}, y_{2}\right)=(0.2,1.01) & \Longrightarrow y^{\prime}=f(0.2,1.01)=0.19 \\
y_{3} & =1.01+0.1(0.19)=1.029 \\
\left(t_{3}, y_{3}\right)=(0.3,1.029) & \Longrightarrow y^{\prime}=f(0.3,1.029)=0.271 \\
y_{4} & =1.029+0.1(0.271)=1.029+0.0271=1.0561 \\
y(0.4) & \approx 1.0561
\end{aligned}
$$

Example II

Solve the initial value problem

$$
y^{\prime}=1+t-y, y(0)=1
$$

analytically. Compute $y(0.4)$ and compare the answer with the result given by Euler's method above.

$$
\begin{aligned}
y^{\prime}+y & =1+t \quad\left\{I(t)=e^{t}\right. \\
y^{\prime} e^{t}+y e^{t} & =e^{t}+t e^{t} \\
\left(y e^{t}\right)^{\prime} & =e^{t}+t e^{t} \\
y e^{t} & =t e^{t}+C \\
y & =t+C e^{-t} \\
1 & =0+C \\
C & =1 \\
y & =t+e^{-t} \\
y(0.4) & =0.4+e^{-0.4} \approx 1.07032 \\
\text { Euler: } y(0.4) & \approx 1.0561
\end{aligned}
$$

Will Murray's Differential Equations, XXIV. Numerical techniques: Euler's method3

We were off by about 0.014 . That's not bad.

Example III

Use Euler's method with step size $h=0.1$ to estimate $y(0.4)$ in the initial value problem $y^{\prime}=$ $t^{2}+y^{2}, y(0)=1$.

$$
\begin{align*}
(0,1) & \rightarrow y^{\prime}=1 \\
(0.1,1.1) & \rightarrow y^{\prime}=0.01+1.21=1.22 \\
(0.2,1.222) & \rightarrow y^{\prime}=0.04+1.49328=1.53328 \\
(0.3,1.37533) & \rightarrow y^{\prime}=0.09+1.89153=1.98153 \tag{0.4,1.573}
\end{align*}
$$

So $y(0.4) \approx 1.573$.

Example IV

Use Euler's method with step size $h=0.3$ to estimate $y(0.6)$ in the initial value problem $y^{\prime}=$ $t-y, y(0)=1$.

$$
\left.\begin{array}{rl}
(0,1) & \Longrightarrow \\
(0.3,0.7) & \Longrightarrow \\
y^{\prime}=-1 \\
(0.6,0.58)
\end{array}\right] \quad y^{\prime}=0.3-0.7=-0.41 \text {. }
$$

Example V

Solve the initial value problem

$$
y^{\prime}=t-y, y(0)=1
$$

analytically. Compute $y(0.6)$ and compare the answer with the result given by Euler's method above.

$$
\begin{aligned}
y^{\prime}+y & =t \quad\left\{I(t)=e^{t}\right. \\
y^{\prime} e^{t}+y e^{t} & =t e^{t} \\
\left(y e^{t}\right)^{\prime} & =t e^{t} \\
y e^{t} & =t e^{t}-e^{t}+C \\
y & =t-1+C e^{-t} \\
y(0)=1: 1 & =-1+C \\
C & =2 \\
y & =t-1+2 e^{-t} \\
y(0.6) & =0.6-1+2 e^{-0.6} \approx 0.697623 \\
\text { Euler: } y(0.6) & \approx 0.58
\end{aligned}
$$

