Will Murray's Differential Equations, XXI. Systems of equations: repeated eigenvalues1
XXI. Systems of equations: repeated eigenvalues

Lesson Overview

- Recall that to solve the system of linear differential equations $\mathbf{x}^{\prime}=A \mathbf{x}$, we find the eigenvalues and eigenvectors of A.
- If the characteristic equation has a repeated root, then we first find the corresponding eigenvector \mathbf{v} :

$$
(A-r I) \mathbf{v}=\mathbf{0}
$$

- Then find the generalized eigenvector \mathbf{w} :

$$
(A-r I) \mathbf{w}=\mathbf{v}
$$

Solutions from repeated eigenvalues

- Form the two principal solutions and the general solution:

$$
\begin{aligned}
\mathbf{x}^{(1)} & =e^{r t} \mathbf{v} \quad \text { (as before) } \\
\mathbf{x}^{(2)} & =t e^{r t} \mathbf{v}+e^{r t} \mathbf{w} \\
\mathbf{x}_{\text {gen }} & =c_{1} \mathbf{x}^{(1)}+c_{2} \mathbf{x}^{(2)} \\
\mathbf{x}_{\text {gen }} & =c_{1} e^{r t} \mathbf{v}+c_{2}\left(t e^{r t} \mathbf{v}+e^{r t} \mathbf{w}\right)
\end{aligned}
$$

- Use initial conditions, if given, to solve for c_{1} and c_{2}.

Graphing the solutions

- To graph the solutions, first graph $\mathbf{x}^{(1)}$ ($c_{1}=1, c_{2}=0$), which is a straight line in the direction of \mathbf{v}.
- Other solutions $\left(c_{2} \neq 0\right)$ swirl around this line.
- If $c_{2}>0$, then they approach positive multiples of \mathbf{v}.
- If $c_{2}<0$, then they approach negative multiples of \mathbf{v}.

Example I

Find the general solution to the following system:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-4 & 4
\end{array}\right) \mathbf{x}
$$

$r=2,2 . \quad \mathbf{v}=\binom{1}{2} .(A-r I) \mathbf{w}=\mathbf{v}$ gives $\mathbf{w}=$ $\binom{0}{1}$.
Danger: You can't scale w by a constant (unless you scale \mathbf{v} accordingly).

$$
\mathbf{x}_{\text {gen }}=c_{1}\binom{1}{2} e^{2 t}+c_{2}\left[\binom{1}{2} t e^{2 t}+\binom{0}{1} e^{2 t}\right]
$$

Example II

Graph some solution trajectories to the previous system of equations:

$$
\mathbf{x}_{\text {gen }}=c_{1}\binom{1}{2} e^{2 t}+c_{2}\left[\binom{1}{2} t e^{2 t}+\binom{0}{1} e^{2 t}\right]
$$

Will Murray's Differential Equations, XXI. Systems of equations: repeated eigenvalues3

- $c_{1}>0, c_{2}=0 \Longrightarrow$ axis. [Graph it pretty horozontal.]
- $c_{1}<0, c_{2}=0 \Longrightarrow$ negative axis.
- $c_{1}=0, c_{2}>0 \Longrightarrow$ starts on y-axis, but $t e^{2 t}$ term pulls it towards upper right axis. (Label entire northwest half $c_{2}>0$, southeast half $c_{2}<0$.
- $c_{1}=0, c_{2}<0 \Longrightarrow$ starts on negative y-axis, but $t e^{2 t}$ term pulls it towards lower left axis.

Example III

Find the general solution to the following system:

$$
\mathrm{x}^{\prime}=\left(\begin{array}{ll}
-4 & 1 \\
-4 & 0
\end{array}\right) \mathbf{x}
$$

$r=-2,-2 . \quad \mathbf{v}=\binom{1}{2} . \quad(A-r I) \mathbf{w}=\mathbf{v}$ gives $\mathbf{w}=\binom{0}{1}$.

$$
\mathbf{x}_{\text {gen }}=c_{1}\binom{1}{2} e^{-2 t}+c_{2}\left[\binom{1}{2} t e^{-2 t}+\binom{0}{1} e^{-2 t}\right]
$$

Example IV

Graph some solution trajectories to the previous system of equations:

$$
\mathbf{x}_{\text {gen }}=c_{1}\binom{1}{2} e^{-2 t}+c_{2}\left[\binom{1}{2} t e^{-2 t}+\binom{0}{1} e^{-2 t}\right]
$$

- $c_{1}>0, c_{2}=0 \Longrightarrow$ axis.
- $c_{1}<0, c_{2}=0 \Longrightarrow$ negative axis.
- $c_{1}=0, c_{2}>0 \Longrightarrow$ starts on y-axis, but $t e^{-2 t}$ term pulls it swirling in to 0 along the upper right axis.
- $c_{1}=0, c_{2}<0 \Longrightarrow$ starts on negative y-axis, but $t e^{-2 t}$ term pulls it swirling in to 0 along lower left axis.
- $c_{1}=-1, c_{2}=$ very small positive \Longrightarrow starts just above $\binom{-1}{-2}$, follows $c_{1}<0$ for a while, but then curls up and to the northeast to follow $c_{1}>0$.

Example V

Solve the following initial value problem:

$$
\begin{aligned}
\mathbf{x}^{\prime} & =\left(\begin{array}{ll}
-4 & 1 \\
-4 & 0
\end{array}\right), \mathbf{x}(0)=\binom{3}{8} \\
\mathbf{x g e n} & =c_{1}\binom{1}{2} e^{-2 t}+c_{2}\left[\binom{1}{2} t e^{-2 t}+\binom{0}{1} e^{-2 t}\right] \\
\mathbf{x}(0) & =c_{1}\binom{1}{2}+c_{2}\binom{0}{1} \\
1 c_{1}+0 c_{2} & =3 \Longrightarrow c_{1}=3 \\
2 x_{1}+1 c_{2} & =8 \Longrightarrow c_{2}=2 \\
\mathbf{x} & =3\binom{1}{2} e^{-2 t}+2\left[\binom{1}{2} t e^{-2 t}+\binom{0}{1} e^{-2 t}\right] \\
& =\binom{3}{8} e^{-2 t}+\binom{2}{4} t e^{-2 t}
\end{aligned}
$$

