XXI. Systems of equations: repeated eigenvalues

Lesson Overview

- Recall that to solve the system of linear differential equations $\mathbf{x}' = A\mathbf{x}$, we find the eigenvalues and eigenvectors of A.
- If the characteristic equation has a <u>repeated</u> root, then we first find the corresponding eigenvector **v**:

$$(A - rI)\mathbf{v} = \mathbf{0}$$

- Then find the generalized eigenvector $\mathbf{w}:$

 $(A - rI)\mathbf{w} = \mathbf{v}$

Solutions from repeated eigenvalues

• Form the two principal solutions and the general solution:

$$\mathbf{x}^{(1)} = e^{rt}\mathbf{v} \quad \text{(as before)}$$
$$\mathbf{x}^{(2)} = te^{rt}\mathbf{v} + e^{rt}\mathbf{w}$$
$$\mathbf{x}_{\text{gen}} = c_1\mathbf{x}^{(1)} + c_2\mathbf{x}^{(2)}$$
$$\mathbf{x}_{\text{gen}} = \boxed{c_1e^{rt}\mathbf{v} + c_2\left(te^{rt}\mathbf{v} + e^{rt}\mathbf{w}\right)}$$

• Use initial conditions, if given, to solve for c_1 and c_2 .

Graphing the solutions

- To graph the solutions, first graph $\mathbf{x}^{(1)}$ $(c_1 = 1, c_2 = 0)$, which is a straight line in the direction of \mathbf{v} .
- Other solutions $(c_2 \neq 0)$ swirl around this line.
- If $c_2 > 0$, then they approach positive multiples of **v**.
- If $c_2 < 0$, then they approach negative multiples of **v**.

Example I

Find the general solution to the following system:

$$\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -4 & 4 \end{pmatrix} \mathbf{x}$$
$$r = 2, 2. \quad \mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}. \quad (A - rI)\mathbf{w} = \mathbf{v} \text{ gives } \mathbf{w} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Danger: You can't scale \mathbf{w} by a constant (unless you scale \mathbf{v} accordingly).

$$\mathbf{x}_{gen} = c_1 \begin{pmatrix} 1\\ 2 \end{pmatrix} e^{2t} + c_2 \left[\begin{pmatrix} 1\\ 2 \end{pmatrix} t e^{2t} + \begin{pmatrix} 0\\ 1 \end{pmatrix} e^{2t} \right]$$

Example II

Graph some solution trajectories to the previous system of equations:

$$\mathbf{x}_{\text{gen}} = c_1 \begin{pmatrix} 1\\ 2 \end{pmatrix} e^{2t} + c_2 \left[\begin{pmatrix} 1\\ 2 \end{pmatrix} t e^{2t} + \begin{pmatrix} 0\\ 1 \end{pmatrix} e^{2t} \right]$$

- $c_1 > 0, c_2 = 0 \implies$ axis. [Graph it pretty horozontal.]
- $c_1 < 0, c_2 = 0 \implies$ negative axis.
- $c_1 = 0, c_2 > 0 \implies$ starts on *y*-axis, but te^{2t} term pulls it towards upper right axis. (Label entire northwest half $c_2 > 0$, southeast half $c_2 < 0$.
- $c_1 = 0, c_2 < 0 \implies$ starts on negative y-axis, but te^{2t} term pulls it towards lower left axis.

Example III

Find the general solution to the following system:

$$\mathbf{x}' = \begin{pmatrix} -4 & 1\\ -4 & 0 \end{pmatrix} \mathbf{x}$$

$$r = -2, -2.$$
 $\mathbf{v} = \begin{pmatrix} 1\\ 2 \end{pmatrix}.$ $(A - rI)\mathbf{w} = \mathbf{v}$ gives
 $\mathbf{w} = \begin{pmatrix} 0\\ 1 \end{pmatrix}.$

$$\mathbf{x}_{\text{gen}} = c_1 \begin{pmatrix} 1\\ 2 \end{pmatrix} e^{-2t} + c_2 \left[\begin{pmatrix} 1\\ 2 \end{pmatrix} t e^{-2t} + \begin{pmatrix} 0\\ 1 \end{pmatrix} e^{-2t} \right]$$

Example IV

Graph some solution trajectories to the previous system of equations:

$$\mathbf{x}_{\text{gen}} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{-2t} + c_2 \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} t e^{-2t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-2t} \right]$$

- $c_1 > 0, c_2 = 0 \implies$ axis.
- $c_1 < 0, c_2 = 0 \implies$ negative axis.
- $c_1 = 0, c_2 > 0 \implies$ starts on *y*-axis, but te^{-2t} term pulls it swirling in to 0 along the upper right axis.
- $c_1 = 0, c_2 < 0 \implies$ starts on negative *y*-axis, but te^{-2t} term pulls it swirling in to 0 along lower left axis.
- $c_1 = -1, c_2 = \text{very small positive} \implies \text{starts}$ just above $\begin{pmatrix} -1 \\ -2 \end{pmatrix}$, follows $c_1 < 0$ for a while, but then curls up and to the northeast to follow $c_1 > 0$.

Example V

Solve the following initial value problem:

$$\mathbf{x}' = \begin{pmatrix} -4 & 1\\ -4 & 0 \end{pmatrix}, \mathbf{x}(0) = \begin{pmatrix} 3\\ 8 \end{pmatrix}$$

$$\mathbf{x}_{\text{gen}} = c_1 \begin{pmatrix} 1\\2 \end{pmatrix} e^{-2t} + c_2 \left[\begin{pmatrix} 1\\2 \end{pmatrix} t e^{-2t} + \begin{pmatrix} 0\\1 \end{pmatrix} e^{-2t} \right]$$
$$\mathbf{x}(0) = c_1 \begin{pmatrix} 1\\2 \end{pmatrix} + c_2 \begin{pmatrix} 0\\1 \end{pmatrix}$$
$$1c_1 + 0c_2 = 3 \Longrightarrow c_1 = 3$$
$$2x_1 + 1c_2 = 8 \Longrightarrow c_2 = 2$$
$$\mathbf{x} = 3 \begin{pmatrix} 1\\2 \end{pmatrix} e^{-2t} + 2 \left[\begin{pmatrix} 1\\2 \end{pmatrix} t e^{-2t} + \begin{pmatrix} 0\\1 \end{pmatrix} e^{-2t} \right]$$
$$= \boxed{\begin{pmatrix} 3\\8 \end{pmatrix} e^{-2t} + \begin{pmatrix} 2\\4 \end{pmatrix} t e^{-2t}}$$