XX. Systems of equations: complex eigenvalues

Lesson Overview

- Recall that to solve the system of linear differential equations $\mathbf{x}' = A\mathbf{x}$, we find the eigenvalues and eigenvectors of A.
- If the eigenvalues are <u>complex</u>, then they will occur in conjugate pairs:

$$r_1 = a + bi, r_2 = a - bi$$

• Choose <u>one</u> of the eigenvalues and its corresponding eigenvector **v**. Form the complex solution:

 $e^{(a+bi)t}\mathbf{v}$

Expanding complex solutions

• Using Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$, expand:

$$e^{bit} = \cos bt + i \sin bt$$

- Multiply this into the eigenvector, and separate into real and imaginary parts $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$.
- Form the general solution:

$$\mathbf{x}_{gen} = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)}$$

Graphing solutions from complex eigenvalues

- To graph the solutions, ignore the e^{at} factor at first.
- Choose one solution and plug in values of t that make $bt = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$.
- You should get ellipses.
- The factor of e^{at} makes the ellipses grow if a > 0 and shrink if a < 0.
- Use initial conditions, if given, to solve for c_1 and c_2 .

Example I

Find the general solution to the following system:

$$\mathbf{x}' = \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} \mathbf{x}$$

$$r = 2 \pm i$$

$$r = 2 + i \implies \mathbf{v} = \begin{pmatrix} 1+i \\ -2 \end{pmatrix}$$

$$\mathbf{x}^{(1)} = e^{(2+i)t} \begin{pmatrix} 1+i \\ 2 \end{pmatrix}$$

$$= e^{2t}(\cos t + i\sin t) \begin{pmatrix} 1+i \\ -2 \end{pmatrix}$$

$$= e^{2t} \left[\begin{pmatrix} \cos t - \sin t \\ -2\cos t \end{pmatrix} + i \begin{pmatrix} \cos t + \sin t \\ -2\sin t \end{pmatrix} \right]$$

$$\mathbf{x}_{gen} = c_1 e^{2t} \begin{pmatrix} \cos t - \sin t \\ -2\cos t \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} \cos t + \sin t \\ -2\sin t \end{pmatrix}$$

Example II

Graph some solution trajectories to the previous system of equations:

$$\mathbf{x}_{\text{gen}} = c_1 e^{2t} \begin{pmatrix} \cos t - \sin t \\ -2\cos t \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} \cos t + \sin t \\ -2\sin t \end{pmatrix}$$

Graph: Take $c_1 = 1, c_2 = 0$. Forget the e^{2t} for now. Graph $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$. Get ellipse from $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ to $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ to $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$ to $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. [Label values of t.]

 $e^{2t} \implies$ get outward swirls. [Graph on a separate graph.]

Example III

Find the general solution to the following system:

$$\mathbf{x}' = \begin{pmatrix} 3 & -5\\ 5 & -5 \end{pmatrix} \mathbf{x}$$
$$r = -1 + 3i \Longrightarrow \mathbf{v} = \begin{pmatrix} 4 + 3i\\ 5 \end{pmatrix}$$
$$\mathbf{x}_{\text{gen}} = c_1 e^{-t} \begin{pmatrix} 4\cos 3t - 3\sin 3t\\ 5\cos 3t \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 3\cos 3t + 4\sin 3t\\ 5\sin 3t \end{pmatrix}$$

Example IV

Graph some solution trajectories to the previous system of equations:

$$\mathbf{x}_{\text{gen}} = c_1 e^{-t} \begin{pmatrix} 4\cos 3t - 3\sin 3t \\ 5\cos 3t \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 3\cos 3t + 4\sin 3t \\ 5\sin 3t \end{pmatrix}$$

 $\begin{pmatrix} 4\\5 \end{pmatrix} \rightarrow \begin{pmatrix} -3\\0 \end{pmatrix} \rightarrow \begin{pmatrix} -4\\-5 \end{pmatrix} \rightarrow \begin{pmatrix} 3\\0 \end{pmatrix}$. Ellipse oriented NE-SW, starting at $\begin{pmatrix} 4\\5 \end{pmatrix}$ and spiraling counterclockwise in to the origin.

Example V

Solve the following system and graph the solution trajectory:

$$\mathbf{x}' = \begin{pmatrix} 3 & -5\\ 5 & -5 \end{pmatrix} \mathbf{x}, \mathbf{x}(0) = \begin{pmatrix} 6\\ 15 \end{pmatrix}$$

$$\mathbf{x}_{\text{gen}} = c_1 e^{-t} \begin{pmatrix} 4\cos 3t - 3\sin 3t \\ 5\cos 3t \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 3\cos 3t + 4\sin 3t \\ 5\sin 3t \end{pmatrix}$$
$$c_1 = 3, c_2 = -2$$
$$\mathbf{x} = e^{-t} \begin{pmatrix} 6\cos 3t - 17\sin 3t \\ 15\cos 3t - 10\sin 3t \end{pmatrix}$$

Ellipse oriented NE-SW, starting at $\begin{pmatrix} 6\\15 \end{pmatrix}$ and spiraling counterclockwise in to the origin.