I. Linear equations

Lesson Overview

- Write $y^{\prime}(x)$ as $\frac{d y}{d x}$ and then try to separate the variables as follows:

$$
(\text { function of } y) d y=(\text { function of } x) d x
$$

- Then you can integrate both sides and solve for $y(x)$.

Notes

- Some equations are both linear and separable, so you can use either technique to solve them. But separation is usually easier.
- When you're integrating both sides of the equation, the C is very important. And it's important that you add it when you do the integration and keep track of it in the ensuing algebra.

Example I

Find the general solution to the following differential equation:

$$
y^{\prime}(x)=\frac{1}{2} y(x)
$$

$$
\left.\begin{array}{rl}
\frac{d y}{d x} & =\frac{1}{2} y \\
\frac{d y}{y} & =\frac{1}{2} d x \\
\ln |y| & =\frac{1}{2} x+C \quad \begin{cases}\text { No } C & \text { needed on the } y \\
\text { side because it would be } \\
\text { absorbed into the other } C .\end{cases}
\end{array}\right\}
$$

General solution: $y=k e^{\frac{1}{2} x}$
Use IC (if given) to find k.

Example II

Solve the following initial value problem:

$$
\begin{aligned}
y y^{\prime}+x & =0, y(0)=3 \\
y^{\prime} & =-\frac{x}{y} \\
\int y d y & =-\int x d x \\
\frac{y^{2}}{2} & =\frac{x^{2}}{2}+C \\
x^{2}+y^{2} & =k \\
y(0)=3 & \Longrightarrow k=9 \\
& \Longrightarrow x^{2}+y^{2}=9
\end{aligned}
$$

Example III

Will Murray's Differential Equations, I. Linear equations3

Determine if the differential equation

$$
y^{\prime}(x)+x y=x^{3}
$$

is separable.

$$
\begin{aligned}
\frac{d y}{d x}+x y & =x^{3} \\
\frac{d y}{d x} & =x^{3}-x y
\end{aligned}
$$

We can't factor the RHS into the form $f(x) g(y)$, so this equation is not separable. However, it is linear, since it has the form $y^{\prime}+P y=Q$, so we could solve using the technique for linear equations.

Example IV

Solve the initial value problem:

$$
3 x-6 y \sqrt{x^{2}+1} \frac{d y}{d x}=0, y(0)=4
$$

$$
\begin{aligned}
6 y \sqrt{x^{2}+1} \frac{d y}{d x} & =3 x \\
2 y d y & =\frac{x d x}{\sqrt{x^{2}+1}} \quad\left\{\text { Let } u:=x^{2}+1, d u=2 x d x .\right\} \\
y^{2} & =\sqrt{x^{2}+1}+C \\
y & =\sqrt{\sqrt{x^{2}+1}+C} \\
4 & =\sqrt{1+C} \\
C & =15 \\
y & =\sqrt{\sqrt{x^{2}+1}+15}
\end{aligned}
$$

Will Murray's Differential Equations, I. Linear equations4

Example V

Solve the initial value problem:

$$
\begin{aligned}
y^{\prime}(x)= & x^{2} y, y(0)=7 \\
y^{\prime}(x) & =x^{2} y \\
\frac{d y}{d x} & =x^{2} y \\
\frac{d y}{y} & =x^{2} d x \\
\ln |y| & =\frac{x^{3}}{3}+C \\
y & =e^{\frac{x^{3}}{3}}+C \\
& =k e^{\frac{x^{3}}{3}} \\
y(0)=7 & \Longrightarrow y=7 e^{\frac{x^{3}}{3}}
\end{aligned}
$$

