Will Murray's Differential Equations, XIX. Systems of equations: distinct real eigenvalues1
XIX. Systems of equations: distinct real eigenvalues

Lesson Overview

- We want to solve the system of linear differential equations:

$$
\begin{aligned}
x_{1}^{\prime}(t) & =a_{11} x_{1}(t)+a_{12} x_{2}(t) \\
x_{2}^{\prime}(t) & =a_{21} x_{1}(t)+a_{22} x_{2}(t)
\end{aligned}
$$

- We write it in matrix form:

$$
\begin{aligned}
x_{1}^{\prime} & =a_{11} x_{1}(t)+a_{12} x_{2}(t) \\
x_{2}^{\prime} & =a_{21} x_{1}(t)+a_{22} x_{2}(t) \\
\binom{x_{1}^{\prime}}{x_{2}^{\prime}} & =\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{x_{1}}{x_{2}} \\
\mathbf{x}^{\prime} & =A \mathbf{x}
\end{aligned}
$$

How to solve systems

- Find the eigenvalues r_{1} and r_{2} of the matrix A and their corresponding eigenvectors $\boldsymbol{\xi}_{1}$ and $\boldsymbol{\xi}_{2}$.
- Then we have the general solution:

$$
\mathbf{x g e n}=c_{1} \boldsymbol{\xi}_{1} e^{r_{1} t}+c_{2} \boldsymbol{\xi}_{2} e^{r_{2} t}
$$

- Use initial conditions, if given, to find c_{1} and c_{2}.

Graphing the solutions

- To graph it, set up axes along the lines spanned by $\boldsymbol{\xi}_{1}$ and $\boldsymbol{\xi}_{2}$.
- Solution trajectories tend towards 0 or ∞ depending on whether r_{1} and r_{2} are positive or negative.
- Solution trajectories tend towards the axis spanned by the eigenvector corresponding to the larger eigenvalue.

Example I

Solve the following system:

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\left(\begin{array}{cc}
6 & -2 \\
-2 & 9
\end{array}\right) \mathbf{x}, \mathbf{x}(0)=\binom{0}{5} \\
& r=5 \Longrightarrow\binom{2}{1} \\
& r=10 \Longrightarrow\binom{-1}{2} \\
& \Longrightarrow \mathbf{x}_{\text {gen }}=c_{1}\binom{2}{1} e^{5 t}+c_{2}\binom{-1}{2} e^{10 t}
\end{aligned}
$$

Initial conditions:

$$
\begin{aligned}
2 c_{1}-c_{2} & =0 \\
c_{1}+2 c_{2} & =5 \\
& \Longrightarrow \mathbf{x}=1\binom{2}{1} e^{5 t}+2\binom{-1}{2} e^{10 t}
\end{aligned}
$$

Example II

Graph some solution trajectories to the previous system of equations:

$$
\mathbf{x}_{\text {gen }}=c_{1}\binom{2}{1} e^{5 t}+c_{2}\binom{-1}{2} e^{10 t}
$$

Graph pure solutions:

$$
\begin{aligned}
c_{1}=1 / 2 /-1 & , \quad c_{2}=0 \\
c_{1}=0 & , \quad c_{2}=1 / 2 /-1
\end{aligned}
$$

Mixed solutions: $c_{1}=1, c_{2}=1$. Bends in direction of c_{2}. All combinations of ± 1. Bend toward c_{2} axis. Label each quadrant with positive and negative values of c_{1} and $c_{2} . c_{1}=1, c_{2}=\frac{1}{100}$ will start near c_{1} axis and follow c_{1} axis for a while, then bend towards c_{2} axis.

Note: The fixed axes are given by the eigenvectors, which get stretched but not moved by the original matrix. All other vectors get moved by the matrix, so their solution paths are curved. They approach the axis of the dominant (larger) eigenvalue $r=10$.

Example III

Solve the following system:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
3 & 2 \\
-3 & -4
\end{array}\right), \mathbf{x}(0)=\binom{5}{0}
$$

$$
\begin{aligned}
r=2 & \Longrightarrow\binom{-2}{1} \\
r=-3 & \Longrightarrow\binom{-1}{3} \\
& \Longrightarrow \mathbf{x}_{\mathrm{gen}}=c_{1} e^{2 t}\binom{-2}{1}+c_{2} e^{-3 t}\binom{-1}{3} \\
I C & \Longrightarrow c_{1}=-3, c_{2}=1 \\
& \Longrightarrow \mathbf{x}=-3 e^{2 t}\binom{-2}{1}+e^{-3 t}\binom{-1}{3}
\end{aligned}
$$

Example IV

Graph some solution trajectories to the previous system of equations:

$$
\mathbf{x}_{\mathrm{gen}}=c_{1} e^{2 t}\binom{-2}{1}+c_{2} e^{-3 t}\binom{-1}{3}
$$

Curves approach c_{1} axis.

Example V

Solve the following system:

$$
\begin{gathered}
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
-6 & 2 \\
2 & -9
\end{array}\right) \mathbf{x} \\
r=-5 \quad \Longrightarrow \quad\binom{2}{1} \\
r=-10 \quad \Longrightarrow \quad\binom{-1}{2} \\
\mathbf{x g e n ~}^{r}=c_{1}\binom{2}{1} e^{-5 t}+c_{2}\binom{-1}{2} e^{-10 t}
\end{gathered}
$$

Will Murray's Differential Equations, XIX. Systems of equations: distinct real eigenvalues5

Example VI

Graph some solution trajectories to the previous system of equations:

$$
\mathbf{x}_{\mathrm{gen}}=c_{1}\binom{2}{1} e^{-5 t}+c_{2}\binom{-1}{2} e^{-10 t}
$$

Graph pure solutions:

$$
\begin{aligned}
& c_{1}=1 / 2 /-1, \\
& c_{2}=0 \\
& c_{1}=0, \quad c_{2}=1 / 2 /-1
\end{aligned}
$$

All curves go inward towards $\binom{2}{1}$ axis.

