Will Murray's Differential Equations, XIV. Series solutions: regular singular points1

XIV. Series solutions: regular singular points

Lesson Overview

- We want to find series solutions $\sum_{n=1}^{\infty} a_{n} x^{n}$ to the differential equation:

$$
\begin{aligned}
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y & =0 \\
y^{\prime \prime}+\frac{Q(x)}{P(x)} y^{\prime}+\frac{R(x)}{P(x)} y & =0
\end{aligned}
$$

- But if $P(0)=0$, then $x_{0}=0$ is called a singular point and the strategy doesn't work.

Definition: Pole of order n

- We say $f(x)$ has a pole of order n at $x_{0}=0$ if f has a series whose first term is $\frac{1}{x^{n}}$.
- We say $x_{0}=0$ is a regular singular point if

1. $\frac{Q}{P}$ has a pole of order at most 1 at 0 , and
2. $\frac{R}{P}$ has a pole of order at most 2 at 0 .

- If $x_{0}=0$ is a regular singular point, then we can use a solution of the form:

$$
y=x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}
$$

- $a_{0} \neq 0$

Solving around regular singular points

- Plug the series into the differential equation.
- You'll get an indicial equation for r, which will have two roots.
- If the difference between the roots is an integer, then you can find a solution for the larger root only.
- If the difference between the roots is not an integer, then you can find a solution for each of the two roots.

Example I

Find the order of the pole at 0 for each of the following functions:

$$
\frac{e^{x}}{x} ; \frac{\sin x}{x} ; \frac{1}{x^{2}} ; 5 x+\frac{4}{x^{3}}-\frac{2}{x}
$$

- $\frac{e^{x}}{x}$ has a pole of order 1 at 0 .
- $\frac{\sin x}{x}$ has a pole of order 0 at 0 .
- $\frac{1}{x^{2}}$ has a pole of order 2 at 0 .
- $f(x)=5 x+\frac{4}{x^{3}}-\frac{2}{x}$. f has a pole of order 3 at 0 .

Example II

Determine whether $x_{0}=0$ is a regular singular point for each of the following equations:

Will Murray's Differential Equations, XIV. Series solutions: regular singular points3

- $x^{2} y^{\prime \prime}+(\sin x) y^{\prime}+3 y=0$
- $x^{2} y^{\prime \prime}+(\cos x) y^{\prime}+e^{x} y=0$
- $x^{2} y^{\prime \prime}+(\sin x) y^{\prime}+3 y=0$ has a regular singular point at $x_{0}=0$.
- $x^{2} y^{\prime \prime}+(\cos x) y^{\prime}+e^{x} y=0$ has an irregular singular point at $x_{0}=0$, because $\frac{Q}{P}$ has a pole of order 2 there.

Example III

Find and solve the indicial equation for the differential equation:

$$
2 x^{2} y^{\prime \prime}+3 x y^{\prime}+\left(2 x^{2}-1\right) y=0
$$

Note that $x_{0}=0$ is a regular singular point.

$$
\begin{array}{rlrl}
y & =x^{r} \sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty} a_{n} x^{n+r} & -y & =\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right) \\
& 2 x^{2} y & =\sum_{n=0}^{\infty} 2 a_{n} x^{n+r+2}=\sum_{n=2}^{\infty} 2 a_{n-2} x^{n+r} \\
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} & 3 x y^{\prime} & =\sum_{n=0}^{\infty} 3(n+r) a_{n} x^{n+r} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2} & 2 x^{2} y^{\prime \prime} & =\sum_{n=0}^{\infty} 2(n+r)(n+r-1) a_{n} x^{n+r}
\end{array}
$$

Example III

$$
\begin{gathered}
2 x^{2} y^{\prime \prime}+3 x y^{\prime}+\left(2 x^{2}-1\right) y=0 \\
\underbrace{[-1+3 r+2 r(r-1)] a_{0} x^{r}}_{n=0}+\underbrace{[-1+3(r+1)+2(r+1) r] a_{1} x^{r+1}}_{n=1}+\cdots \\
\cdots+\sum_{n=\boxed{2}}^{\infty}\left\{[-1+3(n+r)+2(n+r)(n+r-1)] a_{n}+2 a_{n-2}\right\} x^{n+r}=0 \\
a_{0} \neq 0 \Longrightarrow \quad[-1+3 r+2 r(r-1)]=0 \quad\{\text { This is the indicial equation. }\} \\
\\
\\
\quad 2 r^{2}+r-1=0 \\
\\
\\
r=\frac{1}{2},-1
\end{gathered}
$$

Example IV

Find a solution to the differential equation above corresponding to $r=-1$.

$$
\begin{aligned}
& \underbrace{[-1+3 r+2 r(r-1)] a_{0} x^{r}}_{n=0}+\underbrace{[-1+3(r+1)+2(r+1) r] a_{1} x^{r+1}}_{n=1}+\cdots \\
& \cdots+\sum_{n=\sqrt{2}}\left\{[-1+3(n+r)+2(n+r)(n+r-1)] a_{n}+2 a_{n-2}\right\} x^{n+r}=0
\end{aligned}
$$

$r=-1:$

$$
\begin{aligned}
\underline{x^{r}}: \quad[-1+3(-1)+2(-1)(-2)] a_{0} & =0 \Longrightarrow a_{0}=\text { arbitrary } \\
\underline{x^{r+1}}:[-1+3(0)+2(0)(-1)] a_{1} & =0 \Longrightarrow a_{1}=0 \\
{[-1+3(n+r)+2(n+r)(n+r-1)] a_{n}+2 a_{n-2} } & =0 \text { for } n \geq 2 \\
{[-1+3 n-3+2(n-1)(n-2)] a_{n} } & =-2 a_{n-2} \\
\left(2 n^{2}-3 n\right) a_{n} & =-2 a_{n-2} \\
a_{n} & =\frac{-2 a_{n-2}}{n(2 n-3)} \text { for } n \geq 2
\end{aligned}
$$

Example IV

$$
\begin{aligned}
& a_{n}=\frac{-2 a_{n-2}}{n(2 n-3)} \text { for } n \geq 2 \\
& n=2: \quad a_{2}=\frac{-2 a_{0}}{2 \cdot 1} \\
& n=3: \quad a_{3}=\longleftrightarrow \leadsto a_{1}=0 \\
& n=4: \quad a_{4}=\frac{2^{2} a_{0}}{2 \cdot 4 \cdot 1 \cdot 5} \\
& a_{6}=\frac{-2^{3} a_{0}}{2 \cdot 4 \cdot 6 \cdot 1 \cdot 5 \cdot 9}=\frac{-a_{0}}{3!1 \cdot 5 \cdot 9} \\
& a_{8}=\frac{a_{0}}{4!1 \cdot 5 \cdot 9 \cdot 13} \\
& y_{1}=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n} \\
& =x^{r}\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right) \\
& =x^{-1}\left(a_{0}-a_{0} x^{2}+\frac{a_{0}}{2!1 \cdot 5} x^{4}-\frac{a_{0}}{3!1 \cdot 5 \cdot 9} x^{6}+\frac{a_{0}}{4!1 \cdot 5 \cdot 9 \cdot 13} x^{8}+\cdots\right) \\
& =a_{0} x^{-1}\left(1+\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!1 \cdot 5 \cdot 9 \cdots \cdot(4 n-3)}\right) \quad\left\{\begin{array}{l}
\text { (These are not the same } n \text { 's } \\
\text { as above!) }
\end{array}\right\} \\
& =x^{-1}+\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n-1}}{n!1 \cdot 5 \cdot 9 \cdots \cdot(4 n-3)}
\end{aligned}
$$

Note that $r=\frac{1}{2}$ would lead to a different solution.

Example V

Find and solve the indicial equation for the differential equation below. Determine which root(s) would lead to a valid solution.

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+(x+3) y=0
$$

Will Murray's Differential Equations, XIV. Series solutions: regular singular points6

Check: $\frac{Q}{P}$ has a pole of order 1 , and $\frac{R}{P}$ has a pole of order 2 , so $x_{0}=0$ is a regular singular point.

$$
\begin{array}{lll}
y=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n} & & \text { \{Assume } a_{0} \neq 0 . \\
=\sum_{n=0}^{\infty} a_{n} x^{n+r} & & =\sum_{n=0}^{\infty} 3 a_{n} x^{n+r} \\
& x y & =\sum_{n=0}^{\infty} a_{n} x^{n+r+1}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r} \\
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} & -3 x y^{\prime} & =\sum_{n=0}^{\infty}\left[-3(n+r) a_{n} x^{n+r}\right] \\
y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2} & x^{2} y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r} \\
\underline{n=0}: & {[3-3 r+r(r-1)] a_{0} x^{r}=0 \Longrightarrow r^{2}-4 r+3=0 \Longrightarrow r=1,3}
\end{array}
$$

Since these differ by an integer, only the larger one, $r=3$ would lead to a valid solution.

