Will Murray's Differential Equations, XIII. Euler equations1

XIII. Euler equations

Lesson Overview

- A differential equation of the form

$$
x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0
$$

is called an Euler equation.

- To solve it, solve the characteristic equation for r :

$$
r^{2}+(\alpha-1) r+\beta=0
$$

- You might get two real roots, one repeated real root, or two complex conjugate roots.
- Real, distinct roots:

$$
y_{\text {gen }}=c_{1} x^{r_{1}}+c_{2} x^{r_{2}}
$$

- Real, repeated roots:

$$
y_{\text {gen }}=c_{1} x^{r_{1}}+c_{2} x^{r_{1}} \ln x
$$

- Complex roots: $r_{1}, r_{2}=a \pm b i$

$$
y_{\text {gen }}=c_{1} x^{a} \cos \left(\ln x^{b}\right)+c_{2} x^{a} \sin \left(\ln x^{b}\right)
$$

Example I

Find the general solution to the differential equation:

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0
$$

$$
\begin{aligned}
r^{2}-4 r+3 & =0 \\
(r-1)(r-3) & =0 \Longrightarrow r=1,3 \\
y_{\text {gen }} & =c_{1} x+c_{2} x^{3}
\end{aligned}
$$

Example II

Find the general solution to the differential equation:

$$
x^{2} y^{\prime \prime}-7 x y^{\prime}+16 y=0
$$

$$
\begin{aligned}
r^{2}-8 r+16 & =0 \\
(r-4)(r-4) & =0 \Longrightarrow r=4,4 \\
y_{\text {gen }} & =c_{1} x^{4}+c_{2} x^{4} \ln x
\end{aligned}
$$

Example III

Find the general solution to the differential equation:

$$
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0
$$

$$
\begin{aligned}
r^{2}-2 r+5 & =0 \Longrightarrow r=1 \pm 2 i \\
y_{\text {gen }} & =c_{1} x \cos \ln x^{2}+c_{2} x \sin \ln x^{2}
\end{aligned}
$$

Example IV

Find the general solution to the differential equation:

$$
x^{2} y^{\prime \prime}-6 x y^{\prime}+12 y=0
$$

$$
\begin{aligned}
r^{2}-7 r+12 & =0 \\
(r-3)(r-4) & =0 \Longrightarrow r=3,4 \\
y_{\text {gen }} & =c_{1} x^{3}+c_{2} x^{4}
\end{aligned}
$$

Example V

Find the general solution to the differential equation:

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0
$$

$$
\begin{aligned}
r^{2}+4 r+4 & =0 \\
(r+2)(r+2) & =0 \Longrightarrow r=-2,-2 \\
y_{\text {gen }} & =c_{1} x^{-2}+c_{2} x^{-2} \ln x
\end{aligned}
$$

Example VI

Find the general solution to the differential equation:

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+29 y=0
$$

$$
\begin{aligned}
r^{2}-4 r+29 & =0 \Longrightarrow r=2 \pm 5 i \\
y_{\text {gen }} & =c_{1} x^{2} \cos \ln x^{5}+c_{2} x^{2} \sin \ln x^{5}
\end{aligned}
$$

