Will Murray's Differential Equations, XII. Series solutions1

XII. Series solutions

Lesson Overview

- Guess a power series solution and calculate its derivatives:

$$
\begin{aligned}
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
y^{\prime}(x) & =\sum_{n=0}^{\infty} n a_{n} x^{n-1}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
& =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots \\
& =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\end{aligned}
$$

- Guess a power series solution and calculate its derivatives:

$$
\begin{aligned}
y^{\prime \prime}(x) & =\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2} \\
& =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
\end{aligned}
$$

- Plug your series into the differential equation.
- To combine the series:

1. First match exponents on x by shifting indices.
2. Then match starting indices by pulling out initial terms.

- Find a recurrence relation on the coefficients.
- Solve for higher coefficients in terms of lower ones.
- Use your coefficients to build your solutions.

Example I

Guess a series solution to the differential equation:

$$
y^{\prime}-3 x^{2} y=0
$$

Plug in the solution and find a recurrence relation on the coefficients.

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
y^{\prime} & =\sum_{n=0}^{\infty} n a_{n} x^{n-1}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
3 x^{2} y & =\sum_{n=0}^{\infty} 3 a_{n} x^{n+2}
\end{aligned}
$$

1. First match exponents on x by shifting indices using the mnemonic.
2. Then match starting indices by pulling out initial terms.
3. Match exponents:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} 3 a_{n} x^{n+2}=\sum_{n=2}^{\infty} 3 a_{n-2} x^{n} \\
& \sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\end{aligned}
$$

2. Match starting indices:

$$
\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=a_{1}+2 a_{2} x+\sum_{n=2}^{\infty}(n+1) a_{n+1} x^{n}
$$

Plug in to the DE:

$$
\begin{aligned}
a_{1}+2 a_{2} x+\sum_{n=2}^{\infty}(n+1) a_{n+1} x^{n}-\sum_{n=2}^{\infty} 3 a_{n-2} x^{n} & =0 \\
a_{1}+2 a_{2} x+\sum_{n=\boxed{2}}^{\infty}\left[(n+1) a_{n+1}-3 a_{n-2}\right] x^{n} & =0\left[+0 x+0 x^{2}+\cdots\right]
\end{aligned}
$$

Think of this as a big polynomial [add in terms on RHS]:

$$
\begin{array}{lll}
\underline{\text { const }}: & a_{1}=0 & \Longrightarrow a_{1}=0 \\
\underline{x}: & 2 a_{2}=0 & \Longrightarrow a_{2}=0 \\
\underline{x^{n}}: & (n+1) a_{n+1}-3 a_{n-2}=0 & \text { for } n \geq 2 .
\end{array}
$$

Example II

Use the recurrence relation derived above to solve $y^{\prime}-3 x^{2} y=0$.

$$
\begin{array}{lll}
\underline{\text { const }}: & a_{1}=0 & \Longrightarrow a_{1}=0 \\
\underline{x}: & 2 a_{2}=0 & \Longrightarrow a_{2}=0 \\
\underline{x^{n}}: & (n+1) a_{n+1}-3 a_{n-2}=0 & \text { for } n \geq 2 .
\end{array}
$$

Example II

Use the recurrence relation derived above to solve $y^{\prime}-3 x^{2} y=0$.

$$
\begin{array}{lll}
\underline{\text { const }}: & a_{1}=0 & \Longrightarrow a_{1}=0 \\
\underline{x}: & 2 a_{2}=0 & \Longrightarrow a_{2}=0 \\
\underline{x^{n}}: & (n+1) a_{n+1}-3 a_{n-2}=0 & \text { for } n \geq 2 .
\end{array}
$$

$$
\begin{aligned}
& a_{n+1}=\frac{3 a_{n-2}}{n+1} \\
& n \geq 2: \quad n=2 \quad \Longrightarrow \quad \text { Gives you } a_{3} \text { in terms of } a_{0} \text {. } \\
& n=3 \quad \Longrightarrow \quad \text { Gives you } a_{4} \text { in terms of } a_{1} \text {, which is } 0 \text {, so } a_{4}=0 \text {. } \\
& n=4 \quad \Longrightarrow \quad \text { Gives you } a_{5} \text { in terms of } a_{2} \text {, which is } 0 \text {, so } a_{5}=0 \text {. } \\
& n=5 \quad \Longrightarrow \quad \text { Gives you } a_{6} \text { in terms of } a_{3} \text {, which goes back to } a_{0} \text {. } \\
& \vdots \\
& a_{0} \quad \text { is an arbitrary constant. } \\
& a_{1}=0 \text { from above. } \\
& a_{2}=0 \text { from above. } \\
& n=2 \Longrightarrow a_{3} \quad=\quad \frac{3 a_{0}}{3}=a_{0} \\
& n=3 \Longrightarrow a_{4} \quad=\quad \frac{3 a_{1}}{4}=0 \\
& n=4 \Longrightarrow a_{5} \quad=\quad \frac{3 a_{2}}{5}=0 \\
& a_{6}=\frac{3 a_{3}}{6}=\frac{a_{0}}{2} \\
& a_{9} \quad=\quad \frac{3 a_{6}}{9}=\frac{a_{0}}{2 \cdot 3} \\
& a_{3 n}=\frac{a_{0}}{n!} \\
& y=a_{0}+a_{0} x^{3}+\frac{a_{0}}{2} x^{6}+\frac{a_{0}}{3!} x^{9}+\cdots \\
& =a_{0} \sum_{n=0}^{\infty} \frac{x^{3 n}}{n!} \\
& =c e^{x^{3}}
\end{aligned}
$$

(Of course, this agrees with what you would have gotten solving it as a separable or linear DE.)

Will Murray's Differential Equations, XII. Series solutions5

Guess a series solution to the differential equation:

$$
y^{\prime \prime}-x y^{\prime}-y=0
$$

Plug in the solution and find a recurrence relation on the coefficients.

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+\sum_{n=1}^{\infty} a_{n} x^{n} \\
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1}, x y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=2 a_{2}+\sum_{n=1}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
\end{aligned}
$$

Strategy for combining series:

1. First match exponents on x by shifting indices using the mnemonic.
2. Then match starting indices by pulling out initial terms.
[We could have matched these at $n=0$, but I kind of like this because it shows some starting terms.]

$$
\begin{aligned}
& 2 a_{2}-a_{0}+\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-n a_{n}-a_{n}\right] x^{n}=0 \\
& 2 a_{2}-a_{0}=0 \Longrightarrow a_{2}=\frac{a_{0}}{2} \\
& a_{n+2}=\frac{a_{n}}{n+2} \text { for } n \geq \boxed{1}
\end{aligned}
$$

Example IV

Will Murray's Differential Equations, XII. Series solutions6

Use the recurrence relation derived above to solve $y^{\prime \prime}-x y^{\prime}-y=0$.

$$
\begin{array}{r}
2 a_{2}-a_{0}=0 \\
\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-n a_{n}-a_{n}\right] x^{n}=0
\end{array}
$$

Example IV

Use the recurrence relation derived above to solve $y^{\prime \prime}-x y^{\prime}-y=0$.

$$
\begin{array}{r}
2 a_{2}-a_{0}=0 \\
\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}-n a_{n}-a_{n}\right] x^{n}=0
\end{array}
$$

$$
\begin{aligned}
2 a_{2}-a_{0} & =0 \Longrightarrow a_{2}=\frac{a_{0}}{2} \\
a_{n+2} & =\frac{a_{n}}{n+2} \text { for } n \geq 1 \\
a_{0}, a_{1} & \text { are arbitrary. } \\
a_{2} & =\frac{a_{0}}{2} \\
a_{3} & =\frac{a_{1}}{3} \\
a_{4} & =\frac{a_{2}}{4}=\frac{a_{0}}{2 \cdot 4} \\
a_{5} & =\frac{a_{3}}{5}=\frac{a_{1}}{3 \cdot 5} \\
y & =a_{0}+a_{1} x+\frac{a_{0}}{2} x^{2}+\frac{a_{1}}{3} x^{3}+\frac{a_{0}}{2 \cdot 4} x^{4}+\frac{a_{1}}{3 \cdot 5} x^{5}+\cdots \\
& \left.=a_{0}\left(1+\frac{1}{2} x^{2}+\frac{1}{2 \cdot 4} x^{4}+\cdots\right)+a_{1}\left(x+\frac{1}{3} x^{3}+\frac{1}{3 \cdot 5} x^{5}+\cdots\right) \quad \quad \text { Multiply by } \frac{2 \cdot 4 \cdot 6 \cdots}{2 \cdot 4 \cdot 6 \cdot \cdots}\right] \\
& =a_{0}\left(1+\sum_{n=1}^{\infty} \frac{x^{2 n}}{2 \cdot 4 \cdots \cdots \cdot 2 n}\right)+a_{1}\left(\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{1 \cdot 3 \cdot 5 \cdots \cdots \cdot(2 n+1)}\right) \quad \text { _ } \\
& =a_{0} \sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n} n!}+a_{1} \sum_{n=0}^{\infty} \frac{2^{n} n!x^{2 n+1}}{(2 n+1)!} \\
& =c_{1} e^{\frac{x^{2}}{2}}+c_{2} \sum_{n=0}^{\infty} \frac{2^{n} n!x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

One is an elementary function, and one is a power series. To evaluate it, plug in a value of x and take as many terms as you want for accuracy.

Example V

Guess a series solution to the differential equation:

$$
y^{\prime \prime}-3 x y^{\prime}-3 y=0
$$

Plug in the solution and find a recurrence relation on the coefficients.

$$
\begin{array}{ll}
y=\sum_{n=0}^{\infty} a_{n} x^{n} & 3 y=3 a_{0}+\sum_{n=1}^{\infty} 3 a_{n} x^{n} \\
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} & 3 x y^{\prime}=\sum_{n=1}^{\infty} 3 n a_{n} x^{n} \\
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} \\
& =2 a_{2}+\sum_{n=1}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
\end{array}
$$

[We could have matched these at $n=0$, but I kind of like this because it shows some starting terms.]

$$
\begin{aligned}
2 a_{2}-3 a_{0} & =0 \Longrightarrow a_{2}=\frac{3 a_{0}}{2} \\
(n+2)(n+1) a_{n+2}-3 n a_{n}-3 a_{n} & =0, \text { for } n \geq 1 \\
\text { Recurrence: } & a_{n+2}
\end{aligned}=\frac{3 a_{n}}{n+2} \quad \$
$$

Example VI

Use the recurrence relation derived above to solve $y^{\prime \prime}-3 x y^{\prime}-3 y=0$.

$$
\begin{aligned}
2 a_{2}-3 a_{0} & =0 \\
\underline{\text { Recurrence: }} a_{n+2} & =\frac{3 a_{n}}{n+2}
\end{aligned}
$$

Example VI

Use the recurrence relation derived above to solve $y^{\prime \prime}-3 x y^{\prime}-3 y=0$.

$$
\underline{\text { Recurrence: }} \quad a_{n+2}=\frac{3 a_{n}}{n+2}
$$

$$
2 a_{2}-3 a_{0}=0 \Longrightarrow a_{2}=\frac{3 a_{0}}{2}
$$

Recurrence: $\quad a_{n+2}=\frac{3 a_{n}}{n+2}$

$$
\begin{aligned}
a_{0}, a_{1} & \text { are arbitrary. } \\
a_{2} & =\frac{3 a_{0}}{2} \text { from above } \\
n=1: \quad a_{3} & =\frac{3 a_{1}}{3}=a_{1} \\
a_{4} & =\frac{3 a_{2}}{4}=\frac{3^{2} a_{0}}{2 \cdot 4} \\
a_{5} & =\frac{3 a_{3}}{5}=\frac{3^{2} a_{1}}{3 \cdot 5} \\
y & =a_{0}+a_{1} x+\frac{3 a_{0}}{2} x^{2}+\frac{3 a_{1}}{3} x^{3}+\frac{3^{2} a_{0}}{2 \cdot 4} x^{4}+\frac{3^{2} a_{1}}{3 \cdot 5} x^{5}+\cdots \\
& =a_{0}\left(1+\frac{3}{2} x^{2}+\frac{3^{2}}{2 \cdot 4} x^{4}+\frac{3^{3}}{2 \cdot 4 \cdot 6} x^{6}+\cdots\right)+a_{1}\left(x+\frac{3}{3} x^{3}+\frac{3^{2}}{3 \cdot 5} x^{5}+\frac{3^{3}}{3 \cdot 5}\right. \\
& =a_{0} \sum_{n=0}^{\infty} \frac{\left(\frac{3}{2} x^{2}\right)^{n}}{n!}+a_{1} \sum_{n=0}^{\infty} \frac{3^{n}}{1 \cdot 3 \cdot 5 \cdots \cdots(2 n+1)} x^{2 n+1} \quad\left\{\text { Multiply by } \frac{2 \cdot 4 \cdot 6 \cdot \cdots \cdot \cdot}{2 \cdot 4 \cdot 6 \cdots(!)}\right. \\
& =c_{1} e^{\frac{3}{2} x^{2}}+c_{2} \sum_{n=0}^{\infty} \frac{6^{n} n!}{(2 n+1)!} x^{2 n+1}
\end{aligned}
$$

Notes:

1. Sometimes (usually) you can't convert back to elementary functions.
2. Sometimes you can't even find a nice formula for the general term. In that case, just calculate the first few coefficients using the recursion relation.
