I. Linear equations

Lesson Overview

- Today we'll learn how to solve linear differential equations:

$$
y^{\prime}(x)+P(x) y(x)=Q(x)
$$

- Notes on the form:

1. Linear means that we think of y and y^{\prime} as the variables (not x and y). We think of as $P(x)$ and $Q(x)$ as coefficients: The equation has the form $y^{\prime}+P y=Q$, which would be a line.
2. If there is a coefficient in front of $y^{\prime}(x)$, make sure you divide it away before using the algorithm below.

How to solve linear equations

$$
y^{\prime}(x)+P(x) y(x)=Q(x)
$$

1. Calculate the integrating factor

$$
I(x):=e^{\int P(x) d x}
$$

and multiply that by both sides.
2. This makes the left hand side into

$$
e^{\int P(x) d x} y^{\prime}+P(x) e^{\int P(x) d x} y=I y^{\prime}+I^{\prime} y=(I y)^{\prime}
$$

so we can then integrate both sides.

Solving linear equations

$$
y^{\prime}(x)+P(x) y(x)=Q(x)
$$

3. Then you'll get

$$
I(x) y(x)=\int I(x) Q(x) d x+C
$$

and you can solve for $y(x)$.

Further notes

- If $P(x)$ is negative, make sure to include that in finding $I(x)$. And remember that $e^{-\ln (\text { cucumber })}$ doesn't simplify to - (cucumber)! It's $\frac{1}{\text { (cucumber) }}$.
- When you're integrating $P(x)$ to find the integrating factor $I(x)$, it's ok to leave off the constant C.
- However, when you're integrating both sides of the equation, the C is very important. And it's important that you add it when you do the integration and keep track of it in the ensuing algebra.

Example I

Find the general solution to the following differential equation:

$$
y^{\prime}+x y=x^{3}
$$

Example I

$$
y^{\prime}(x)+x y=x^{3}
$$

Multiply both sides by $e^{x^{2}}$:

$$
e^{\frac{x^{2}}{2}} y^{\prime}+x e^{\frac{x^{2}}{2}} y=x^{3} e^{\frac{x^{2}}{2}}
$$

Point: The LHS is now $\left(y e^{\frac{x^{2}}{2}}\right)^{\prime}$, using the Product Rule.

$$
\left(y e^{\frac{x^{2}}{2}}\right)^{\prime}=x^{3} e^{\frac{x^{2}}{2}} \quad\{\text { Integrate both sides: } \quad\}
$$

RHS: $\quad u:=\frac{x^{2}}{2} \quad d u=x d x$

$$
\begin{aligned}
\int x^{3} e^{\frac{x^{2}}{2}} d x & =\int x^{2} e^{\frac{x^{2}}{2}} x d x \\
& =\int 2 u e^{u} d u \\
\text { Use parts: } & =2\left(u e^{u}-e^{u}\right)+C=2\left(\frac{x^{2}}{2} e^{\frac{x^{2}}{2}}-e^{\frac{x^{2}}{2}}\right)+C=x^{2} e^{\frac{x^{2}}{2}}-2 e^{\frac{x^{2}}{2}}+C \\
y e^{\frac{x^{2}}{2}} & =\left(x^{2}-2\right) e^{\frac{x^{2}}{2}}+C \\
y & =x^{2}-2+C e^{-\frac{x^{2}}{2}} \quad\left\{\left(\text { Not } y=x^{2}-2+C!\right) \quad\right\}
\end{aligned}
$$

Now use IC (if given) to get C.

Example II

Solve the following initial value problem:

$$
(\cos x) y^{\prime}+(\sin x) y=\cos ^{5} x \sin x, y(0)=2
$$

Example II

$$
\begin{aligned}
(\cos x) y^{\prime}+(\sin x) y & =\cos ^{5} x \sin x, y(0)=2 \\
(\cos x) y^{\prime}+(\sin x) y & =\cos ^{5} x \sin x, y(0)=2 \\
y^{\prime}+(\tan x) y & =\cos ^{4} x \sin x \\
I(x) & =e^{\int \tan x d x} \\
& =e^{-\ln \cos x} \\
& =\sec x \\
(\sec x) y^{\prime}+(\sec x \tan x) y & =\cos ^{3} x \sin x \quad\left\{\begin{array}{l}
\text { At this point, check } \\
\text { whether the LHS really is } \\
\text { the derivative of }(\sec x) y .
\end{array}\right\} \\
(\sec x) y & =-\frac{1}{4} \cos ^{4} x+C \\
y & =C \cos x-\frac{1}{4} \cos ^{5} x \\
y(0) & =C-\frac{1}{4}=2 \\
C & =\frac{9}{4} \\
y & =\frac{9}{4} \cos x-\frac{1}{4} \cos ^{5} x
\end{aligned}
$$

Example III

For the linear differential equation

$$
(x+1) y^{\prime}-y=\sin x
$$

what is $I(x)$?

$$
\frac{1}{x+1}
$$

Example IV

Will Murray's Differential Equations, I. Linear equations5

For the linear differential equation

$$
(\sin x) y^{\prime}-(\cos x) y=x^{2},
$$

what is $I(x)$?
$\csc x$

Example V

Solve the initial value problem:

$$
(t+1) y^{\prime}-3 y=t, y(1)=2
$$

Example V

$$
(t+1) y^{\prime}-3 y=t, y(1)=2
$$

Will Murray's Differential Equations, I. Linear equations6

$$
\begin{aligned}
y^{\prime}-\frac{3}{t+1} y & =\frac{t}{t+1} \\
I(t) & :=e^{-\int \frac{3}{t+1} d t} \\
& =e^{-3 \ln (t+1)} \\
& =\frac{1}{(t+1)^{3}} \\
\frac{y^{\prime}}{(t+1)^{3}}-\frac{3}{(t+1)^{4}} y & =\frac{t}{(t+1)^{4}} \\
\left(\frac{y}{(t+1)^{3}}\right)^{\prime} & =\frac{t}{(t+1)^{4}} \\
\frac{y}{(t+1)^{3}} & =\int \frac{t}{(t+1)^{4}} d t \quad\{u:=t+1, d u=d t \\
& =\int \frac{u-1}{u^{4}} d u \\
& =\int\left(\frac{1}{u^{3}}-\frac{1}{u^{4}}\right) d u \\
y & =-\frac{1}{2(t+1)^{2}}+\frac{1}{3(t+1)^{3}}+C \\
2 & =-\frac{1}{2}(t+1)+\frac{1}{3}+C(t+1)^{3} \\
\frac{8}{3} & =8 C \\
C & =\frac{1}{3} \\
y & =\frac{1}{3}\left[(t+1)^{3}+1\right]-\frac{1}{2}(t+1) \\
& =\frac{1}{3} t^{3}+t^{2}+\frac{1}{2} t+\frac{1}{6}
\end{aligned}
$$

Example VI

Find the general solution to the following

Will Murray's Differential Equations, I. Linear equations7
differential equation:

$$
x y^{\prime}+3 y=\cos x, x>0
$$

Example VI

$$
\begin{aligned}
y^{\prime}+\frac{3}{x} y & =\frac{\cos x}{x} \\
I(x) & =e^{\int \frac{3}{x} d x}=e^{3 \ln x}=e^{x^{3}}=x^{3} \\
x^{3} y^{\prime}+3 x^{2} y & =x^{2} \cos x \\
& \begin{array}{r|l|l}
x^{2} & \cos x \\
\hline 2 x & \sin x \\
& 2 & -\cos x \\
& 0 & -\sin x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
x^{3} y & =x^{2} \sin x+2 x \cos x-2 \sin x+C \\
y & =\frac{x^{2} \sin x+2 x \cos x-2 \sin x+C}{x^{3}}
\end{aligned}
$$

